容器服务与达摩院合作 AHPA 获 AAAI 2023 IAAI人工智能创新应用奖

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 近日,阿里云容器服务 ACK 与达摩院数据决策团队合作的论文《AHPA: Adaptive Horizontal Pod Autoscaling Systems on Alibaba Cloud Container Service for Kubernetes》获 AAAI 2023 IAAI 人工智能创新应用奖。

作者:阿里云容器服务


近日,阿里云容器服务 ACK 与达摩院数据决策团队合作的论文《AHPA: Adaptive Horizontal Pod Autoscaling Systems on Alibaba Cloud Container Service for Kubernetes》获 AAAI 2023 IAAI 人工智能创新应用奖[1]。AAAI 是人工智能领域的顶级会议之一,入选中国计算机学会(CCF)推荐 A 类国际会议列表。AAAI/IAAI 主要收录人工智能在工业界成功应用的案例,备受工业界关注,每年仅有 10 项左右工作被评选为 IAAI 人工智能创新应用奖,今年 AHPA 也有幸获此殊荣。


1.png

AHPA 论文截图


团队介绍


阿里云容器服务 ACK 管理着海量的 Kubernetes 集群,在集群管理、集群运维等领域积累了丰富的经验,并构建了智能运维平台 CIS(Container Intelligence Service),旨在通过智能化手段解决运维难题。达摩院数据决策团队在时间序列分析/预测/异常监测/AIOps 方向深耕多年[2],数十篇文章发表在 NeurIPS, ICML, AAAI, KDD, SIGMOD, ICDE 等顶会和多篇中美专利,获得 2022 ICASSP AIOps Challenge(故障定位)冠军等多个国际奖项。


AHPA


“极致弹性”吸引着众多企业拥抱云原生。企业的业务流量往往呈现出明显的波峰、波谷形态,如果采用固定实例数的方式则会造成较大的资源浪费。为此,Kubernetes 提供了 HPA、CronHPA 等弹性伸缩策略。CronHPA 支持在固定时间进行实例数伸缩,但是设定定时规则较为复杂,也会存在资源浪费;HPA 策略根据应用实时负载设置实例数量,但是存在弹性触发滞后的问题,导致应用的服务质量下降。为此,容器服务 ACK 联合达摩院时序智能团队共同打造了 AHPA,可以根据历史时序数据进行主动预测,避免弹性滞后。同时会根据实时数据动态调整主动预测结果,兼容周期变动、数据丢失等场景。


2.png

图2 AHPA 框架


AHPA 整体架构如图 1 所示,分为数据采集、预测及弹性伸缩三大部分。AHPA 核心算法整体框架如图 2 所示,主要由指标预测及性能模型两个核心模块组成。目前 AHPA 已支持 CPU、Memory、GPU、RT、QPS 等常见指标,在阿里内外众多业务中得到应用。AHPA 算法可以帮助客户识别业务是否存在周期性。当数据存在周期性时,AHPA 对数据缺失、毛刺以及业务变更引发的数据周期变化等有很强的鲁棒性。即使数据不存在周期性,AHPA 也因具备一定的预测能力,可以提前感知数据趋势变化;对数据丢失、噪音等也有很强的鲁棒性。此外,AHPA 相关算法 RobustScaler 也被数据库领域顶级会议 ICDE2022(CCF A 类)的长文论用,详细内容请参考论文《RobustScaler: QoS-Aware Autoscaling for Complex Workloads》[3]


3.png

图2 AHPA 算法框架图


在 ACK 集群中使用 AHPA 请参考文档[4],欢迎大家试用并提供宝贵意见。


相关链接


[1] Zhiqiang Zhou, Chaoli Zhang, Lingna Ma, Jing Gu, Huajie Qian, Qingsong Wen, Liang Sun, Peng Li, Zhimin Tang, "AHPA: Adaptive Horizontal Pod Autoscaling Systems on Alibaba Cloud Container Service for Kubernetes", in Proc. AAAI Conference on Artificial Intelligence and 35th Annual Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2023), Washington DC, Feb. 2023. (AAAI/IAAI 2023 Innovative Application Award)


[2] Qingsong Wen, Linxiao Yang, Tian Zhou, Liang Sun, "Robust Time Series Analysis and Applications: An Industrial Perspective," in the 28th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2022 Tutorial.

https://qingsongedu.github.io/timeseries-tutorial-kdd-2022/


[3] Huajie Qian, Qingsong Wen, Liang Sun, Jing Gu, Qiulin Niu, Zhimin Tang, "RobustScaler: QoS-Aware Autoscaling for Complex Workloads," in Proc. IEEE 38th International Conference on Data Engineering (ICDE 2022), Kuala Lumpur, Malaysia, May 2022


.[4] 文档

https://help.aliyun.com/document_detail/416041.html


点击此处查看阿里云容器服务 AHPA 弹性预测产品文档详情。

相关实践学习
巧用云服务器ECS制作节日贺卡
本场景带您体验如何在一台CentOS 7操作系统的ECS实例上,通过搭建web服务器,上传源码到web容器,制作节日贺卡网页。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
33 0
|
20天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
26 0
|
11天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
6天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
100 10
|
13天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
50 9
|
16天前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####
|
21天前
|
存储 Prometheus 监控
Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行
本文深入探讨了在Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行。
30 5
|
21天前
|
开发框架 安全 开发者
Docker 是一种容器化技术,支持开发者将应用及其依赖打包成容器,在不同平台运行而无需修改。
Docker 是一种容器化技术,支持开发者将应用及其依赖打包成容器,在不同平台运行而无需修改。本文探讨了 Docker 在多平台应用构建与部署中的作用,包括环境一致性、依赖管理、快速构建等优势,以及部署流程和注意事项,展示了 Docker 如何简化开发与部署过程,提高效率和可移植性。
49 4
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
19天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能在医疗诊断中的应用与挑战
随着人工智能技术的飞速发展,其在医疗领域的应用日益广泛,尤其是在疾病诊断方面展现出巨大的潜力。本文将深入探讨AI技术在医疗诊断中的应用现状、面临的挑战以及未来的发展趋势,旨在为相关领域的研究者和从业者提供参考和启示。
41 2

相关产品

  • 容器计算服务
  • 下一篇
    DataWorks