基于朴素贝叶斯算法对新闻文本进行分类

简介: 基于朴素贝叶斯算法对新闻文本进行分类

朴素贝叶斯算法

贝叶斯定理


贝叶斯定理(Bayes Theorem)也称贝叶斯公式,是关于随机 事件的条件概率的定理 定理内容: 如果随机事件A1 ,A2 ,...,An构成样本空间的一个划分(不重、不 漏),且都有正概率,则 对任何一个事件B(P(B)>0),有



提示: 贝叶斯定理是“由果溯因”的推断,所以计算的是"后验概率"


举例说明:


据天气预报预测,今日下雨(事件A)的概率为50%——P(A);


堵车(事件B)的概率是80%——P(B)


如果下雨,堵车的概率是95%——P(B|A)


计算:如果放眼望去,已经堵车了,下雨的概率是多少?


根据贝叶斯定理:P(A|B)=0.5x0.95÷0.8=0.59375


朴素贝叶斯算法原理


重要前提条件: 一定要“朴素”—— 样本的各特征之间相互独立


对于待分类样本,在此待分类样本出现的条件下(也就是样本 各个特征已知),计算 各个类别出现的概率,哪个最大就认为此样本属于哪个类别。


详细过程


1 设x={a1 ,a2 1 ,...,am}为一个待分类项,而每个a为x的一个特征属性

2 有类别集合C={y1 ,y2 2 ,...,yn}

3 计算P(y1|x),P(y2|x),...,P(yn|x)

4 如果P(yk|x)=max{P(y1|x),P(y2|x),...,P(yn|x)},则x∈yk 4

对于第三步的详细计算:



朴素贝叶斯的三种方式


三种朴素贝叶斯的适用条件


伯努利朴素贝叶斯

       适用于离散变量,条件是各个特征是服从伯努利分布(0-1分 布),每一个特征的取值 只能有两种值。在scikit-learn中,使用 sklearn.naive_bayes.BernoulliNB实现伯努利朴素 贝叶斯。


高斯朴素贝叶斯

       适用于连续变量,条件是各个特征是服从正态分布的。在scikitlearn中,使用 sklearn.naive_bayes.GaussianNB实现高斯朴素贝叶斯。


多项式朴素贝叶斯

       适用于离散变量,条件是各个特征是服从多项式分布的,所以每 个特征值不能是负数。 在scikit-learn中,使用sklearn.naive_bayes.MultinomialNB实 现多项式朴素贝叶斯。


补充: 多项式分布来源于统计学中的多项式实验:实验包括n次重 复试验,每项试验都有不同的可能结果。在任何给定的试验 中,特定结果发生的概率是不变的


实战——对新闻文本进行文本分类


文本特征向量化


使用朴素贝叶斯模型去给文本数据分类,就必须对文本数据进行 文本特征向量化

本节课使用CountVectorizer进行文本特征向量化

CountVectorizer会统计特定文档中单词出现的次数(统计词 频)

CountVectorizer通过fit_transform()函数计算各个词语出现 的次数

加载新闻数据、文本分类


本案例使用sklearn.datasets.fetch_20newsgroups函数下载新 闻数据(比较耗时)

使用sklearn.naive_bayes.MultinomialNB进行文本分类

from sklearn.datasets import fetch_20newsgroups  # 从sklearn.datasets里导入新闻数据抓取器 fetch_20newsgroups
from sklearn.model_selection import  train_test_split
from sklearn.feature_extraction.text import CountVectorizer  # 从sklearn.feature_extraction.text里导入文本特征向量化模块
from sklearn.naive_bayes import MultinomialNB  
news = fetch_20newsgroups(subset='all')   # 下载新闻数据,比较耗时
len(news.data)  # 输出数据的条数:18846
# 拆分数据集
X_train,X_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25,random_state=666)
# 文本特征向量化
vec = CountVectorizer()  # 通过统计词频进行文本向量化
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)
# 使用多项式朴素贝叶斯进行文本分类
mnb = MultinomialNB()
mnb.fit(X_train,y_train)
mnb.score(X_test,y_test)  # 测试集上的准确率

目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
113 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
2月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
40 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
2月前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
32 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
55 9
|
3月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
58 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
4月前
|
存储 算法 安全
密码算法的分类
【8月更文挑战第23天】
147 0
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
25天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
12天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。