PandaSQL:一个让你能够通过SQL语句进行pandas的操作的python包

简介: PandaSQL:一个让你能够通过SQL语句进行pandas的操作的python包

Pandas是近年来最好的数据操作库之一。它允许切片、分组、连接和执行任意数据转换。如果你熟练的使用SQL,那么这篇文章将介绍一种更直接、简单的使用Pandas处理大多数数据操作案例。

640.png

假设你对SQL非常的熟悉,或者你想有更可读的代码。或者您只是想在dataframe上运行一个特殊的SQL查询。或者,也许你来自R,想要一个sqldf的替代品。

这篇文章将介绍一种在pandas的dataframe中使用SQL的python包,并且使用一个不等链接的查询操作来介绍PandasSQL的使用方法。

不等连接(Non-equi join)

假设你必须连接两个dataframe。其中一个显示了我们对某些商品进行促销的时间段。第二个是事务Dataframe。我想知道促销活动推动的销售情况,也就是促销期间的销售情况。

我们可以通过联接项目列以及联接条件(TransactionDt≥StartDt和TransactionDt≤EndDt)来实现这一点。因为现在我们的连接条件也有大于号和小于号,这样的连接称为不等连接。在继续之前,一定要考虑如何在pandas中做这样的事情。

640.png

pandas的解决方案

那么在pandas身上该怎么做呢?pandas肯定可以解决这个问题,尽管我认为它的可读性不够。

让我们从生成一些要处理的随机数据开始。

importpandasaspdimportrandomimportdatetimedefrandom_dt_bw(start_date,end_date):
days_between= (end_date-start_date).daysrandom_num_days=random.randrange(days_between)
random_dt=start_date+datetime.timedelta(days=random_num_days)
returnrandom_dtdefgenerate_data(n=1000):
items= [f"i_{x}"forxinrange(n)]
start_dates= [random_dt_bw(datetime.date(2020,1,1),datetime.date(2020,9,1)) forxinrange(n)]
end_dates= [x+datetime.timedelta(days=random.randint(1,10)) forxinstart_dates]
offerDf=pd.DataFrame({"Item":items,
"StartDt":start_dates,
"EndDt":end_dates})
transaction_items= [f"i_{random.randint(0,n)}"forxinrange(5*n)]
transaction_dt= [random_dt_bw(datetime.date(2020,1,1),datetime.date(2020,9,1)) forxinrange(5*n)]
sales_amt= [random.randint(0,1000) forxinrange(5*n)]
transactionDf=pd.DataFrame({"Item":transaction_items,"TransactionDt":transaction_dt,"Sales":sales_amt})
returnofferDf,transactionDf

您不需要担心上面的随机数据生成代码。只要知道我们的随机数据是什么样子就可以了:

offerDf,transactionDf=generate_data(n=100000)

640.png

640.png

一旦我们有了数据,我们就可以通过合并列项上的数据来进行不等连接,然后根据所需条件进行过滤。

merged_df=pd.merge(offerDf,transactionDf,on='Item')pandas_solution=merged_df[(merged_df['TransactionDt']>=merged_df['StartDt']) &        (merged_df['TransactionDt']<=merged_df['EndDt'])]

结果如下,正如我们所希望的:

640.png

PandaSQL解决方案

Pandas解决方案很好,可以做我们想做的事情,但是我们也可以使用PandaSQL以一种可读性更强的方式完成同样的事情。

PandaSQL是什么?

PandaSQL为我们提供了在panda数据数据库上编写SQL的方法。因此,如果您已经编写了一些SQL查询,那么使用pandaSQL可能比将它们转换为panda语法更有意义。为了开始使用PandaSQL,我们简单地安装它:

pipinstall-Upandasql

安装了pandaSQL之后,我们可以通过创建pysqldf函数来使用它,该函数接受一个查询作为输入,并运行该查询来返回一个Pandas DF。不用担心语法,因为跟使用pandas差不多。

frompandasqlimportsqldfpysqldf=lambdaq: sqldf(q, globals())

现在,我们可以使用这个函数在我们的pandas dataframe上运行任何SQL查询。下面是不等连接,我们希望使用可读性更强的SQL格式。

q="""SELECT A.*,B.TransactionDt,B.SalesFROMofferDf AINNER JOINtransactionDf BONA.Item = B.Item ANDA.StartDt <= B.TransactionDt ANDA.EndDt >= B.TransactionDt;"""pandaSQL_solution=pysqldf(q)

结果是一个我们所期望的panda Dataframe。索引已经自动为我们重置了,不像以前那样需要手动操作。

640.png

警告

虽然PandaSQL函数允许我们在我们的panda数据框架上运行SQL查询,并且在某些情况下是一个非常好的工具,但是它的性能不如纯panda语法。

640.png

640.png

当我们用可读性更强的PandaSQL为pandas计时时,我们发现PandaSQL花费的时间大约是原生pandas的10倍。

结论

虽然PandaSQL库的性能不如本地的panda,但当我们想进行特别分析时,它是对我们的数据分析工具箱的一个很好的补充,而且对于那些更习惯使用SQL查询的人来说。

想要更深入地了解这篇文章的代码,请访问我的GitHub知识库,在那里你可以找到这篇文章和我所有的文章的代码。

https://github.com/MLWhiz/data_science_blogs/tree/master/pandasql


译者注:我一直在寻找能够使用sql处理pandas的dataframe的解决方案,pandasSQL在这这方面起到了很好的开端,虽然他的性能还不足以在生产环境中使用,但是我们再进行EDA和数据分析等一次性的操作的时候完全可以使用sql替代复杂的pandas的查询语法。所以如果你跟我一样,对SQL非常熟悉,并且厌倦了pandas的复杂语法,pandasSQL是一个很好的解决方案

目录
相关文章
|
4月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
371 0
|
4月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
566 0
|
存储 人工智能 运维
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
673 48
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
|
11月前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
287 4
|
6月前
|
数据处理 开发工具 开发者
requirement.txt 管理python包依赖
在 Python 项目中,`requirements.txt` 用于记录依赖库及其版本,便于环境复现。本文介绍了多种生成该文件的方法:基础方法使用 `pip freeze`,进阶方法使用 `pipreqs`,专业方法使用 `poetry` 或 `pipenv`,以及手动维护方式。每种方法适用不同场景,涵盖从简单导出到复杂依赖管理,并提供常见问题的解决方案,帮助开发者高效生成精准的依赖列表,确保项目环境一致性。
1912 4
|
人工智能 Python
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
515 7
|
6月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
515 0
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
627 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
11月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
|
11月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
本文来自YashanDB官网,介绍如何处理Oracle客户端sql*plus中使用@@调用同级目录SQL脚本的场景。崖山数据库23.2.x.100已支持@@用法,但旧版本可通过Python脚本批量重写SQL文件,将@@替换为绝对路径。文章通过Oracle示例展示了具体用法,并提供Python脚本实现自动化处理,最后调整批处理脚本以适配YashanDB运行环境。

推荐镜像

更多