Python中得可视化:使用Seaborn绘制常用图表(下)

简介: Python中得可视化:使用Seaborn绘制常用图表

现在,让我们为Rating列中出现的类别绘制饼图。

#importingallthelibrariesimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabornassns#Plottingapiechartplt.figure(figsize=[9,7])
pstore['Content Rating'].value_counts().plot.pie()
plt.show()

上面代码的饼状图如下所示,

640.png

用于Rating的饼状图

从上面的饼图中,我们不能正确的推断出“所有人10+”和“成熟17+”。当这两类人的价值观有点相似的时候,很难评估他们之间的差别。

我们可以通过将上述数据绘制成柱状图来克服这种情况。

#importingallthelibrariesimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabornassns#Plottingabarchartplt.figure(figsize=[9,7])
pstore['Content Rating'].value_counts().plot.barh()
plt.show()

柱状图如下所示,

640.png

Rating栏的条形图

与饼图类似,我们也可以定制柱状图,使用不同的柱状图颜色、图表标题等。

3.散点图

到目前为止,我们只处理数据集中的一个数字列,比如评级、评论或大小等。但是,如果我们必须推断两个数字列之间的关系,比如“评级和大小”或“评级和评论”,会怎么样呢?

当我们想要绘制数据集中任意两个数值列之间的关系时,可以使用散点图。此图是机器学习领域的最强大的可视化工具。

让我们看看数据集评级和大小中的两个数字列的散点图是什么样子的。首先,我们将使用matplotlib绘制图,然后我们将看到它在seaborn中的样子。

使用matplotlib的散点图

#importallthenecessarylibraries#Plottingthescatterplotplt.scatter(pstore.Size, pstore.Rating)
plt.show()

图是这样的

640.png

使用Matplotlib的散点图

使用Seaborn的散点图

在直方图和散点图的代码中,我们将使用sn .joinplot()

sns.scatterplot()散点图的代码。

#importingallthelibrariesimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabornassns#Plottingthesamethingnowusingajointplotsns.jointplot(pstore.Size, pstore.Rating)
plt.show()

上面代码的散点图如下所示,

640.png

使用Seaborn的散点图

在seaborn中使用散点图的主要优点是,我们将同时得到散点图和直方图。

如果我们想在代码中只看到散点图而不是组合图,只需将其改为“scatterplot”

回归曲线

回归图在联合图(散点图)中建立了2个数值参数之间的回归线,并有助于可视化它们的线性关系。

#importingallthelibrariesimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabornassns#Plottingthesamethingnowusingajointplotsns.jointplot(pstore.Size, pstore.Rating, kind="reg")
plt.show()

图是这样的,

640.png

在Seaborn中使用jointplot进行回归分析

从上图中我们可以推断出,当app的价格上升时,评级会稳步上升。

4.配对图

当我们想要查看超过3个不同数值变量之间的关系模式时,可以使用配对图。例如,假设我们想要了解一个公司的销售如何受到三个不同因素的影响,在这种情况下,配对图将非常有用。

让我们为数据集的评论、大小、价格和评级列创建一对图。

我们将在代码中使用sns.pairplot()一次绘制多个散点图。

#importingallthelibrariesimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabornassns#Plottingthesamethingnowusingajointplotsns.pairplot(pstore[['Reviews', 'Size', 'Price','Rating']])
plt.show()

上面图形的输出图形是这样的,

640.png

使用Seaborn的配对图

  • 对于非对角视图,图像是两个数值变量之间的散点图
  • 对于对角线视图,它绘制一个柱状图,因为两个轴(x,y)是相同的。

5.热力图

热图以二维形式表示数据。热图的最终目的是用彩色图表显示信息的概要。它利用了颜色强度的概念来可视化一系列的值。

我们在足球比赛中经常看到以下类型的图形,

640.png

足球运动员的热图

在Seaborn中创建这个类型的图。

我们将使用sn .heatmap()绘制可视化图。

当你有以下数据时,我们可以创建一个热图。

640.png

上面的表是使用来自Pandas的透视表创建的。

现在,让我们看看如何为上表创建一个热图。

#importingallthelibrariesimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabornassns##Plotaheatmapsns.heatmap(heat)
plt.show()

在上面的代码中,我们已经将数据保存在新的变量“heat”中。

热图如下所示,

640.png

使用Seaborn创建默认热图

我们可以对上面的图进行一些自定义,也可以改变颜色梯度,使最大值的颜色变深,最小值的颜色变浅。

更新后的代码是这样的,

#importingallthelibrariesimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabornassns#Applyingsomecustomizationtotheheatmapsns.heatmap(heat, cmap="Greens", annot=True)
plt.show()

上面代码的热图是这样的,

640.png

带有一些自定义的热图代码

在我们给出“annot = True”的代码中,当annot为真时,图中的每个单元格都会显示它的值。如果我们在代码中没有提到annot,那么它的默认值为False

Seaborn还支持其他类型的图形,如折线图、柱状图、堆叠柱状图等。但是,它们提供的内容与通过matplotlib创建的内容没有任何不同。

结论

这就是Seaborn在Python中的工作方式以及我们可以用Seaborn创建的不同类型的图形。正如我已经提到的,Seaborn构建在matplotlib库之上。因此,如果我们已经熟悉Matplotlib及其函数,我们就可以轻松地构建Seaborn图并探索更深入的概念。

感谢您的阅读!!

目录
相关文章
|
19天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
46 8
|
19天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
58 7
|
19天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
47 4
|
19天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
41 5
|
23天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
64 8
|
26天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
156 7
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
2月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
教大家用 Python 绘制几棵圣诞树~
今天分享五种用 Python 绘制圣诞树的方法,从基础到高级,效果也不断攀升分为 1 到 5 五个 Level 水平;
教大家用 Python 绘制几棵圣诞树~