使用Numpy进行深度学习中5大反向传播优化算法的性能比较(一)

简介: 使用Numpy进行深度学习中5大反向传播优化算法的性能比较(一)

简介

深度学习被称为人工智能的未来。现在,神经网络被称为通用函数逼近器,也就是说,它们有能力表示这个宇宙中任何复杂的函数。计算这个具有数百万个参数的通用函数的想法来自优化的基本数学。优化可以通过多种方式完成,但在本文中,我们将重点讨论基于梯度下降的优化技术。

非凸函数的优化是研究的主要领域。多年来,不同的科学家提出了不同的优化算法来优化神经网络的成本函数。这些算法大部分都是基于梯度的方法,稍作修改。在这篇文章中,我们将讨论5个专业的下降基于算法-Gradient Descent,Momentum,Adagrad, RMSprop, Adam。

方法

为了了解每个算法在实际中是如何工作的,我们将使用一个凸二次函数。我们将对每个算法进行固定次数的迭代(20次),以比较它们在达到最优点时的收敛速度和轨迹。下面给出了为此任务选择的函数的方程,以及使用Matplotlib绘制的函数的三维图和级别集。

image.png


   

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(13,6))
ax = plt.axes(projection="3d")
start, stop, n_values = -8, 8, 800
x_vals = np.linspace(start, stop, n_values)
y_vals = np.linspace(start, stop, n_values)
X, Y = np.meshgrid(x_vals, y_vals)
Z = np.sqrt(0.1*X**2 + 2*Y**2)
plt.contourf(X,Y,Z,)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='winter', edgecolor='none')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')

image.png

首先,我们将从最基本的梯度下降算法开始,然后我们将跟随它们发展的趋势来支持每个算法发展背后的想法。所以趋势是这样的

1-Gradient Descent

2-Momentum

3-Adagrad

4-RMSprop

5-Adam

因为所有这些算法在更新规则的每次迭代时都需要梯度。因此,下面给出了函数的梯度,用于在每次迭代时更新两个变量。我们将对所有算法使用固定的学习率值=0.4。

image.png

1、Gradient Descent

梯度下降法是求解最优解的最传统的方法。在这个算法中,使用当前梯度(gt)乘以一些称为学习率的因子来更新当前权值。更新规则的公式如下所示。

image.png

lr=0.4
x1=-4
x2=-6
l1_gd=[]
l2_gd=[]
for i in range(20):
  l1_gd.append(x1)
  l2_gd.append(x2)
  x1=x1-lr*0.2*x1
  x2=x2-lr*4*x2

使用梯度下降的轨迹

image.png

fig = plt.figure(figsize=(13,6))
left, bottom, width, height = 100, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])
start, stop, n_values = -8, 8, 100
x_vals = np.linspace(start, stop, n_values)
y_vals = np.linspace(start, stop, n_values)
X, Y = np.meshgrid(x_vals, y_vals)
Z = np.sqrt(0.1*X**2 + 2*Y**2)
plt.contourf(X,Y,Z,)
plt.plot(l1_gd[:15],l2_gd[:15],color="red",marker="*",markeredgecolor="black",linewidth=3,label="Gradient Descent")
plt.figure(figsize=(15,10))
plt.figure(figsize=(15,10))
ax.set_title('Level Sets of the Function',size=20)
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
ax.legend()
plt.show()

正如我们在上面的图中看到的,梯度下降经历了很多振荡,收敛速度非常慢。所以在后面的部分,我们将学习梯度下降的改进,它将帮助我们实现稳定和更快的收敛。

目录
相关文章
|
3天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
94 59
|
5天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2天前
|
机器学习/深度学习 算法
深度学习中的模型优化策略
【10月更文挑战第35天】在深度学习的海洋中,模型优化是那把能够引领我们抵达知识彼岸的桨。本文将从梯度下降法出发,逐步深入到动量、自适应学习率等高级技巧,最后通过一个实际代码案例,展示如何应用这些策略以提升模型性能。
|
5天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
16天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
15天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
16天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
16天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
13 1
|
11天前
|
机器学习/深度学习 数据采集 数据可视化
使用Python实现深度学习模型:智能植物生长监测与优化
使用Python实现深度学习模型:智能植物生长监测与优化
43 0
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
73 0
下一篇
无影云桌面