m基于PSO粒子群优化的物流作业整合matlab仿真,计算最低运输费用、代理人转换费用、运输方式转化费用和时间惩罚费用

简介: m基于PSO粒子群优化的物流作业整合matlab仿真,计算最低运输费用、代理人转换费用、运输方式转化费用和时间惩罚费用

1.算法概述

    粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。  

PSO 过程:
第1 步: 种群随机初始化。
第2 步: 对种群内的每一个个体计算适应值(fitness value) , 适应值与最优解的距离直接有关。
第3 步: 种群根据适应值进行复制。
第4 步: 如果终止条件满足, 则停止; 否则转到第2 步。

   PSO 算法中每个优化问题的解都有是搜索空间中的一只鸟, 称为粒子。与其他进化计算技术不同的是群体中的每个粒子可以记忆自己到过的最优位置, 并能感知邻近群体已达到的最优位置, 每个粒子能够根据自身到过的最优位置和邻近群体已到过的最优位置来更新自己, 然后粒子们不断地追随当前的最优粒子在解空间搜索。

  有M个作业(运输任务),S个代理人,k种运输方式,n个节点(城市)。每个作业都有时间限制,由第四方物流对各作业、各代理人、各种运输方式进行整合。各作业在任意节点上可由任意代理人进行代理,即在各节点可进行代理人之间的代理转换;各作业在任意节点之间只可选择一种运输方式,代理人在节点之间的运输能力不同,根据不同运量提供的代理价格折扣不同。模型为求解出各作业的运输路线及在各节点上选择由哪个代理人选择哪种运输方式。

1.png
2.png
3.png

成本分为四个部分:运输费用、代理人转换费用、运输方式转化费用和时间惩罚费用。

4.png

2.仿真效果预览
matlab2022a仿真结果如下:

5.png
6.png
7.png

3.核心MATLAB程序

%PSO
%x(s,k,m,i,j) = 1 表示作业m在节点i和节点j之间由代理人s采用k种运输方式代理;否则x(s,k,m,i,j)=0;
%r(s,l,m,i)   = 1 表示作业m在节点i由代理人s转换成代理人l;否则r(s,l,m,i)=0;
%R(k,v,m,i)   = 1 表示作业m在节点i由k种运输方式转换为v种运输方式,否则R(k,v,m,i)=0;
%由于算法较为复杂,这里无法直接将所有因素考虑,这里采用分级优化,即对性能影响最大的因素进行优化,再给予优化结果进行次级因素优化
 
%确定路线
%确定路线
%确定路线
%初始化x,r,R,初始化的值是随便设置的
for i = 1:n
    for j = 1:n
        if d(i,j) ~= 0 & d(i,j) ~= F
           x(:,:,:,i,j) = 1; 
           r(:,:,:,i)   = 1;
           R(:,:,:,i)   = 1;
        else
           x(:,:,:,i,j) = 0; 
           r(:,:,:,i)   = 0;
           R(:,:,:,i)   = 0;
        end
    end
end
 
All_cost = fitness(M,n,g,G,C,q,d,p,Z,T,LT,ET,R,r,x);
 
 
%下面开始PSO优化
itmax               = 300;%进化代数,就是预设的迭代次数。
W(1)                = 0.729;% 粒子先前速度保持。惯性权重
a(1)                = 0.316;% 用于计算W。
c1                  = 2; %认知部分 加速系数
c2                  = 2; %社会部分 加速系数
xmax                = 1;
xmin                = 0;
ii                  = 1;
num_particle        = 100;
D                   = size(d,1);
particle            = zeros(2*num_particle,D,D,M,itmax); 
 
particle(:,:,:,:,1) = xmin+(xmax-xmin)*rand(2*num_particle,D,D,M); 
V(:,:,:,:,1)        = round((xmin-xmax)+2*(xmax-xmin)*rand(2*num_particle,D,D,M));
 
fit                 = zeros(num_particle,itmax);% 用于存储粒子的适应值
pbest               = zeros(2*num_particle,D,D,M,itmax); % 用于存储粒子的位置
 
x2                  = zeros(g,G,M,n,n,2*num_particle);
 
for m = 1:M
    for i = 1:n
        for j = 1:n
            for nn = 1 : 2*num_particle
                x2(:,:,m,i,j,nn) = particle(nn,i,j,m,1);
            end
        end  
    end   
end
 
x_tmp = zeros(g,G,M,n,n);
for nn = 1 : num_particle
    x_tmp     = x2(:,:,:,:,:,nn);
    fit(nn,1) = fitness(M,n,g,G,C,q,d,p,Z,T,LT,ET,R,r,x_tmp);
end
 
%*********************************************************
pbest(:,:,:,:,1)   = particle(:,:,:,:,1);
pbest_value(:,1) = fit(:,1);  %个体最优值
[Cs,I]           = min(pbest_value(:,1));
gbest_value(1)   = Cs; % 群最优值
 
for i=1:num_particle
    gbest(2*i-1:2*i,:,:,:,1)=particle(2*I-1:2*I,:,:,:,1);  %群最优粒子位置
end
 
tmps = 0;
route = zeros(n,n,M,2*num_particle);
for ii=2:itmax
     
    ii
    
    V(:,:,:,:,ii)        = 0.729*V(:,:,:,:,ii-1)+c1*rand*(pbest(:,:,:,:,ii-1)-particle(:,:,:,:,ii-1))+...
                                                 c2*rand*(gbest(:,:,:,:,ii-1)-particle(:,:,:,:,ii-1));
 
    V(:,:,:,:,ii)        = min(V(:,:,:,:,ii),xmax-xmin);
    V(:,:,:,:,ii)        = max(V(:,:,:,:,ii),xmin-xmax);
    particle(:,:,:,:,ii) = particle(:,:,:,:,ii-1)+V(:,:,:,:,ii);
    particle(:,:,:,:,ii) = min(particle(:,:,:,:,ii),xmax);  
    particle(:,:,:,:,ii) = max(particle(:,:,:,:,ii),xmin); 
    for m = 1:M
        for i = 1:n
            for j = 1:n
                for nn = 1 : 2*num_particle
                    if d(i,j) > 0
                       x2(:,:,m,i,j,nn) = double(particle(nn,i,j,m,ii)>0.5);%对于优化结果,只取0或者1
                    else
                       x2(:,:,m,i,j,nn) = 0;%对于优化结果,只取0或者1 
                    end
                end
            end  
        end  
    end
    for m = 1:M
        for i = 1:n
            for j = 1:n
                for nn = 1 : 2*num_particle
                    if d(i,j) > 0
                       route(i,j,m,nn)    = particle(nn,i,j,m,ii);
                    else
                       route(i,j,m,nn)    = 0;
                    end
                end
            end  
        end    
    end
    
    
    for nn = 1 : num_particle
        x_tmp      = x2(:,:,:,:,:,nn);
        fit(:,ii)  = fitness(M,n,g,G,C,q,d,p,Z,T,LT,ET,R,r,x_tmp);
    end    
 
    %下面更新 pbest and pbest_value 
    pbest_value(:,ii)=min(pbest_value(:,ii-1),fit(:,ii));
    
    for i=1:num_particle
        if pbest_value(i,ii) == fit(i,ii)   
           pbest(2*i-1:2*i,:,:,:,ii) = particle(2*i-1:2*i,:,:,:,ii);
        else
           pbest(2*i-1:2*i,:,:,:,ii) = pbest(2*i-1:2*i,:,:,:,ii-1);
        end
    end
 
........................................................
02-006m
相关文章
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
3天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
2天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
31 18
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
256 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
152 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
123 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章