【MindStudio训练营第一季】MindStudio Profiling随笔

简介: Ascend AI处理器是一款面向AI业务应用的高性能集成芯片,包含AI CPU、A Core、AI Vector Core等计算单元来提升AI任务的运算性能。

MindStudio Profiler简介

Ascend AI处理器是一款面向AI业务应用的高性能集成芯片,包含AI CPU、A Core、AI Vector Core等计算单元来提升AI任务的运算性能。基于Ascend AI处理器,Mindstudio在算子开发、模型训练及推理应用等不同环节,提供了端到端的Profiler工具。该工具可以帮助用户看到模型从应用层到芯片层的接口和算子耗时,从而准确定位系统的软、硬件性能瓶颈,提高性能分析的效率。

调优主要分为三步:

  • 性能数据采集、解析、分析
  • 性能问题定位,发现性能瓶颈点
  • 采取性能优化措施

性能分析简要介绍

image.png

通过命令行采集性能数据

数据采集方式

.msprof.bin

image.png

数据采集方式——离线推理

  1. acl.json配置文件方式
  • 打开工程文件,查看调用的aclInit0函数,获取acl.json文件路径
  • 修改acl.json文件,添加Profiling相关配置

image.png

  1. AI任务相关性能数据采集方式 - API接口
API接口类型
  • aclprofinit: 设置落盘路径
  • aclprofCreateConfig: 设置采集参数
  • aclprofStart: 开始采集
  • aclmdlExecute: 执行模型
  • aclprofStop: 结束采集
  • aclprofDestroyConfig: 释放配置资源
  • aclprofFinalize:释放profiling组件资源
API接口规范
  • ACL API(C接口)
  • pyACL API (Python接口)

image.png

  1. 数据采集方式——在线推理与训练
MindSpore

image.png

TensorFlow

环境变量配置:

export PROFILING MODE=true
export PROFILING OPTIONS='"output":"/tmp","training trace":"on""task trace":"on","aicpu":"on,"aic metrics:"PipeUtilization")

训练脚本配置
Estimator模式下,通过NPURunConfig中的profiling_config开启Profiling数据采集。

sess.run模式下,通过session配置项profiling_mode.profiling_options开启Profiling数据采集。

image.png

Pytorch 框架侧数据的采集方法
with torch.autograd.profiler.profile(use_npu= True) as prof:
      for epoch in range(10):
        y_pred = model(x data)
        loss = loss_func(y_pred, y_data)
        loss.backward()
profexport_chrome_trace( 'profiler.json')

image.png

Pytorch CANN侧数据的采集方法
config=torch_npu.npu.profileConfig(
    ACL_PROF_ACL_API=True,
    ACL_PROF_TASK_TIME=False,
    ACL_PROF_AICPU=False,
    AC_PROF_AICORE_METRICS=False,
    aiCoreMetricsType=0)
with torch.npu.profile (profiler_result_path, config=config) as prof:
    for epoch in range(10):
      y_pred = model(x data)
      loss = loss_func(y_pred, y_data)
      loss.backward()

image.png

同时采集PyTorch框架侧和CANN数据

msprof.bin

with torch.npu.profile (profiler result path, use e2e profiler=True) as prof:
    for epoch in range(10):
      y_pred = model(x data)
      loss = loss func(y_pred, y_data)
      loss.backward()

image.png

对比不同迭代的耗时
with torch.npu.profile (profiler_result_path) as prof:
    for epoch in range(10):
       torch_npu.npu.iteration_start()
       Y_pred = model(x data)
       loss = loss_func (y_pred, y_data)
       loss.backward()
       torch_npu.npu.iteration end()


msprof --export=on --output= fprof path] --iteration-id=3

image.png

仅采集需要的迭代

def execute model():
      y_pred = model(x data)
      loss = loss_func(y_pred, y_data)
      loss.backward()
for epoch in range(10):
   if epoch != 2:
      execute model()
   else:
      with torch.npu.profile (profiler_result_path) as prof:
          execute model()
for epoch in range(10):
   if epoch == 2:
     torch_npu.npu.prof_init(profiler_result_path)
     torch_npu.npu.prof_start()
   execute model()
   if epoch == 2:
     torch_npu.npu.prof_stop()
     torch_npu.npu.prof_finalize()

image.png

  1. Profiling数据说明

(1) Step trace timeline数据: step trace数据查看选代耗时情况,识别较长选代进行分析。

msporf --export=on --output=prof_path

image.png
image.png

(2) 对应迭代的msprof timeline数据: 通过打开导出的msprof数据查看送代内耗时情况,存在较长耗时算子时,可以进一步找算子详细信息辅助定位;存在通信耗时或调度间隙较长时,分析调用过程中接口耗时。

image.png

(3)HCCL timeline数据:通过多卡进行训练时,卡间通信算子也可能导致性能瓶颈。

image.png

(4)打开组件接口耗时统计表:可以查看迭代内AscendCL API 和 Runtime APl的接口耗时情况,辅助分析接口调用对性能的影响。

image.png

(5)打开对应的算子统计表:可以查看送代内每个AI CORE和AI CPU算子的耗时及详细信息,进一步定位分析算子的metrics指标数据,分析算子数据搬运、执行流水的占比情况,识别算子瓶颈点。

image.png

  1. 优化案例——算子融合

image.png
image.png

通过MindStudio IDE分析性能

IDE模式

集群调优

image.png
image.png
image.png

目录
相关文章
|
2月前
|
关系型数据库 MySQL 数据库
什么是事务以及事务的四大特性?
事务是数据库操作的基本单元,具有ACID四大特性:原子性、一致性、隔离性、持久性。它确保数据的正确性与完整性。并发事务可能引发脏读、不可重复读、幻读等问题,数据库通过不同隔离级别(如读未提交、读已提交、可重复读、串行化)加以解决。MySQL默认使用可重复读级别,兼顾性能与数据一致性需求。
138 3
|
存储 网络协议 API
「译文」CMDB 最佳实践技术指南 -2- 主流的 CMDB 发现技术
「译文」CMDB 最佳实践技术指南 -2- 主流的 CMDB 发现技术
|
存储 easyexcel Java
阿里easyexcel解析百万级大数据量的Excel表格,看这一篇文章就够了
阿里easyexcel解析百万级大数据量的Excel表格,看这一篇文章就够了
阿里easyexcel解析百万级大数据量的Excel表格,看这一篇文章就够了
|
设计模式 算法 Java
工具类的设计与实现最佳实践
工具类的设计与实现最佳实践
|
11月前
|
存储 安全 Java
深入理解Java中的FutureTask:用法和原理
【10月更文挑战第28天】`FutureTask` 是 Java 中 `java.util.concurrent` 包下的一个类,实现了 `RunnableFuture` 接口,支持异步计算和结果获取。它可以作为 `Runnable` 被线程执行,同时通过 `Future` 接口获取计算结果。`FutureTask` 可以基于 `Callable` 或 `Runnable` 创建,常用于多线程环境中执行耗时任务,避免阻塞主线程。任务结果可通过 `get` 方法获取,支持阻塞和非阻塞方式。内部使用 AQS 实现同步机制,确保线程安全。
1066 3
|
缓存 Java 数据库
后端性能优化的实践与经验分享
【5月更文挑战第15天】在互联网环境中,后端性能优化对提供卓越用户体验至关重要。关键领域包括:数据库优化(查询优化、索引优化、表结构优化、数据库维护)、缓存策略(内存缓存、CDN内容分发、HTTP缓存)、服务器配置优化(硬件升级、网络优化、操作系统调整)和代码优化(算法与数据结构、懒加载与异步处理、减少冗余计算、多线程与并发)。通过这些方法,可以提升响应速度,增强用户满意度,促进业务增长。
424 3
|
消息中间件 存储 数据管理
【Kafka】zookeeper对于kafka的作用是什么?
【4月更文挑战第6天】【Kafka】zookeeper对于kafka的作用是什么?
|
存储 监控 安全
保护企业财产:ERP系统的安全与数据保护策略
保护企业财产:ERP系统的安全与数据保护策略
916 0
|
前端开发 UED 开发者
【第19期】一文用Tailwind CSS写自己的网站
【第19期】一文用Tailwind CSS写自己的网站
378 0
|
关系型数据库 MySQL 数据库
深入探析MySQL中的隔离性级别:保障数据一致性的关键
在关系型数据库中,隔离性是事务特性中的一个重要方面。它确保了在多个并发事务同时操作数据库时,各个事务之间的操作不会相互干扰,从而保障了数据的一致性和正确性。MySQL作为一款广泛使用的关系型数据库,提供了多种隔离性级别供开发者选择。本文将深入探讨MySQL中的隔离性级别,介绍不同级别的特点、用途以及可能的问题。
576 0