如何使用 LinkedHashMap 实现 LRU 缓存?

简介: 在上一篇文章里,我们聊到了 HashMap 的实现原理和源码分析,在源码分析的过程中,我们发现一些 LinkedHashMap 相关的源码,当时没有展开,现在它来了。那么,LinkedHashMap 与 HashMap 有什么区别呢?其实,LinkedHashMap 的使用场景非常明确 —— LRU 缓存。今天,我们就来讨论 LinkedHashMap 是如何实现 LRU 缓存的。
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。

前言

大家好,我是小彭。

在上一篇文章里,我们聊到了 HashMap 的实现原理和源码分析,在源码分析的过程中,我们发现一些 LinkedHashMap 相关的源码,当时没有展开,现在它来了。

那么,LinkedHashMap 与 HashMap 有什么区别呢?其实,LinkedHashMap 的使用场景非常明确 —— LRU 缓存。今天,我们就来讨论 LinkedHashMap 是如何实现 LRU 缓存的。

本文源码基于 Java 8 LinkedHashMap。


思维导图:


1. 认识 LRU 缓存淘汰算法

1.1 什么是缓存淘汰算法?

缓存是提高数据读取性能的通用技术,在硬件和软件设计中被广泛使用,例如 CPU 缓存、Glide 内存缓存,数据库缓存等。由于缓存空间不可能无限大,当缓存容量占满时,就需要利用某种策略将部分数据换出缓存,这就是缓存的替换策略 / 淘汰问题。常见缓存淘汰策略有:

  • 1、随机策略: 使用一个随机数生成器随机地选择要被淘汰的数据块;
  • 2、FIFO 先进先出策略: 记录各个数据块的访问时间,最早访问的数据最先被淘汰;
  • 3、LRU (Least Recently Used)最近最少策略: 记录各个数据块的访问 “时间戳” ,最近最久未使用的数据最先被淘汰。与前 2 种策略相比,LRU 策略平均缓存命中率更高,这是因为 LRU 策略利用了 “局部性原理”:最近被访问过的数据,将来被访问的几率较大,最近很久未访问的数据,将来访问的几率也较小;
  • 4、LFU (Least Frequently Used)最不经常使用策略: 与 LRU 相比,LFU 更加注重使用的 “频率” 。LFU 会记录每个数据块的访问次数,最少访问次数的数据最先被淘汰。但是有些数据在开始时使用次数很高,以后不再使用,这些数据就会长时间污染缓存。可以定期将计数器右移一位,形成指数衰减。

FIFO 与 LRU 策略

1.2 向外看:LRU 的变型

其实,在标准的 LRU 算法上还有一些变型实现,这是因为 LRU 算法本身也存在一些不足。例如,当数据中热点数据较多时,LRU 能够保证较高的命中率。但是当有偶发的批量的非热点数据产生时,就会将热点数据寄出缓存,使得缓存被污染。因此,LRU 也有一些变型:

  • LRU-K: 提供两个 LRU 队列,一个是访问计数队列,一个是标准的 LRU 队列,两个队列都按照 LRU 规则淘汰数据。当访问一个数据时,数据先进入访问计数队列,当数据访问次数超过 K 次后,才会进入标准 LRU 队列。标准的 LRU 算法相当于 LRU-1;
  • Two Queue: 相当于 LRU-2 的变型,将访问计数队列替换为 FIFO 队列淘汰数据数据。当访问一个数据时,数据先进入 FIFO 队列,当第 2 次访问数据时,才会进入标准 LRU 队列;
  • Multi Queue: 在 LRU-K 的基础上增加更多队列,提供多个级别的缓冲。
小彭在 Redis 和 Vue 中有看到这些 LRU 变型的应用,在 Android 领域的框架中还没有看到具体应用,你知道的话可以提醒我。

1.3 如何实现 LRU 缓存淘汰算法?

这一小节,我们尝试找到 LRU 缓存淘汰算法的实现方案。经过总结,我们可以定义一个缓存系统的基本操作:

  • 操作 1 - 添加数据: 先查询数据是否存在,不存在则添加数据,存在则更新数据,并尝试淘汰数据;
  • 操作 2 - 删除数据: 先查询数据是否存在,存在则删除数据;
  • 操作 3 - 查询数据: 如果数据不存在则返回 null;
  • 操作 4 - 淘汰数据: 添加数据时如果容量已满,则根据缓存淘汰策略一个数据。

我们发现,前 3 个操作都有 “查询” 操作, 所以缓存系统的性能主要取决于查找数据和淘汰数据是否高效。 下面,我们用递推的思路推导 LRU 缓存的实现方案,主要分为 3 种方案:

  • 方案 1 - 基于时间戳的数组: 在每个数据块中记录最近访问的时间戳,当数据被访问(添加、更新或查询)时,将数据的时间戳更新到当前时间。当数组空间已满时,则扫描数组淘汰时间戳最小的数据。

    • 查找数据: 需要遍历整个数组找到目标数据,时间复杂度为 O(n);
    • 淘汰数据: 需要遍历整个数组找到时间戳最小的数据,且在移除数组元素时需要搬运数据,整体时间复杂度为 O(n)。
  • 方案 2 - 基于双向链表: 不再直接维护时间戳,而是利用链表的顺序隐式维护时间戳的先后顺序。当数据被访问(添加、更新或查询)时,将数据插入到链表头部。当空间已满时,直接淘汰链表的尾节点。

    • 查询数据:需要遍历整个链表找到目标数据,时间复杂度为 O(n);
    • 淘汰数据:直接淘汰链表尾节点,时间复杂度为 O(1)。
  • 方案 3 - 基于双向链表 + 散列表: 使用双向链表可以将淘汰数据的时间复杂度降低为 O(1),但是查询数据的时间复杂度还是 O(n),我们可以在双向链表的基础上增加散列表,将查询操作的时间复杂度降低为 O(1)。

    • 查询数据:通过散列表定位数据,时间复杂度为 O(1);
    • 淘汰数据:直接淘汰链表尾节点,时间复杂度为 O(1)。

方案 3 这种数据结构就叫 “哈希链表或链式哈希表”,我更倾向于称为哈希链表,因为当这两个数据结构相结合时,我们更看重的是它作为链表的排序能力。

我们今天要讨论的 Java LinkedHashMap 就是基于哈希链表的数据结构。


2. 认识 LinkedHashMap 哈希链表

2.1 说一下 LinkedHashMap 的特点

需要注意:LinkedHashMap 中的 “Linked” 实际上是指双向链表,并不是指解决散列冲突中的分离链表法。

  • 1、LinkedHashMap 是继承于 HashMap 实现的哈希链表,它同时具备双向链表和散列表的特点。事实上,LinkedHashMap 继承了 HashMap 的主要功能,并通过 HashMap 预留的 Hook 点维护双向链表的逻辑。

    • 1.1 当 LinkedHashMap 作为散列表时,主要体现出 O(1) 时间复杂度的查询效率;
    • 1.2 当 LinkedHashMap 作为双向链表时,主要体现出有序的特性。
  • 2、LinkedHashMap 支持 2 种排序模式,这是通过构造器参数 accessOrder 标记位控制的,表示是否按照访问顺序排序,默认为 false 按照插入顺序。

    • 2.1 插入顺序(默认): 按照数据添加到 LinkedHashMap 的顺序排序,即 FIFO 策略;
    • 2.2 访问顺序: 按照数据被访问(包括插入、更新、查询)的顺序排序,即 LRU 策略。
  • 3、在有序性的基础上,LinkedHashMap 提供了维护了淘汰数据能力,并开放了淘汰判断的接口 removeEldestEntry()。在每次添加数据时,会回调 removeEldestEntry() 接口,开发者可以重写这个接口决定是否移除最早的节点(在 FIFO 策略中是最早添加的节点,在 LRU 策略中是最早未访问的节点);
  • 4、与 HashMap 相同,LinkedHashMap 也不考虑线程同步,也会存在线程安全问题。可以使用 Collections.synchronizedMap 包装类,其原理也是在所有方法上增加 synchronized 关键字。

2.2 说一下 HashMap 和 LinkedHashMap 的区别?

事实上,HashMap 和 LinkedHashMap 并不是平行的关系,而是继承的关系,LinkedHashMap 是继承于 HashMap 实现的哈希链表。

两者主要的区别在于有序性: LinkedHashMap 会维护数据的插入顺序或访问顺序,而且封装了淘汰数据的能力。在迭代器遍历时,HashMap 会按照数组顺序遍历桶节点,从开发者的视角看是无序的。而是按照双向链表的顺序从 head 节点开始遍历,从开发者的视角是可以感知到的插入顺序或访问顺序。

LinkedHashMap 示意图


3. HashMap 预留的 Hook 点

LinkedHashMap 继承于 HashMap,在后者的基础上通过双向链表维护节点的插入顺序或访问顺序。因此,我们先回顾下 HashMap 为 LinkedHashMap 预留的 Hook 点:

  • afterNodeAccess: 在节点被访问时回调;
  • afterNodeInsertion: 在节点被插入时回调,其中有参数 evict 标记是否淘汰最早的节点。在初始化、反序列化或克隆等构造过程中,evict 默认为 false,表示在构造过程中不淘汰。
  • afterNodeRemoval: 在节点被移除时回调。

HashMap.java

// 节点访问回调
void afterNodeAccess(Node<K,V> p) { }
// 节点插入回调
// evict:是否淘汰最早的节点
void afterNodeInsertion(boolean evict) { }
// 节点移除回调
void afterNodeRemoval(Node<K,V> p) { }

除此了这 3 个空方法外,LinkedHashMap 也重写了部分 HashMap 的方法,在其中插入双链表的维护逻辑,也相当于 Hook 点。在 HashMap 的添加、获取、移除方法中,与 LinkedHashMap 有关的 Hook 点如下:

3.1 HashMap 的添加方法中的 Hook 点

LinkedHashMap 直接复用 HashMap 的添加方法,也支持批量添加:

  • HashMap#put: 逐个添加或更新键值对;
  • HashMap#putAll: 批量添加或更新键值对。

不管是逐个添加还是批量添加,最终都会先通过 hash 函数计算键(Key)的散列值,再通过 HashMap#putVal 添加或更新键值对,这些都是 HashMap 的行为。关键的地方在于:LinkedHashMap 在 HashMap#putVal 的 Hook 点中加入了双线链表的逻辑。区分 2 种情况:

  • 添加数据: 如果数据不存在散列表中,则调用 newNode()newTreeNode() 创建节点,并回调 afterNodeInsertion()
  • 更新数据: 如果数据存在散列表中,则更新 Value,并回调 afterNodeAccess()

HashMap.java

// 添加或更新键值对
public V put(K key, V value) {
    return putVal(hash(key) /*计算散列值*/, key, value, false, true);
}

// hash:Key 的散列值(经过扰动)
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
    Node<K,V>[] tab; 
    Node<K,V> p; 
    int n;
    int i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash:散列值转数组下标
    if ((p = tab[i = (n - 1) & hash]) == null)
        // 省略遍历桶的代码,具体分析见 HashMap 源码讲解

        // 1.1 如果节点不存在,则新增节点
        p.next = newNode(hash, key, value, null);
        // 2.1 如果节点存在更新节点 Value
        if (e != null) {
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            // 2.2 Hook:访问节点回调
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 扩容
    if (++size > threshold)
        resize();
    // 1.2 Hook:新增节点回调
    afterNodeInsertion(evict);
    return null;
}

HashMap#put 示意图

3.2 HashMap 的获取方法中的 Hook 点

LinkedHashMap 重写了 HashMap#get 方法,在 HashMap 版本的基础上,增加了 afterNodeAccess() 回调。

HashMap.java

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

LinkedHashMap.java

public V get(Object key) {
    Node<K,V> e;
    if ((e = getNode(hash(key), key)) == null)
        return null;
    // Hook:节点访问回调
    if (accessOrder)
        afterNodeAccess(e);
    return e.value;
}

public V getOrDefault(Object key, V defaultValue) {
    Node<K,V> e;
    if ((e = getNode(hash(key), key)) == null)
        return defaultValue;
    // Hook:节点访问回调
    if (accessOrder)
        afterNodeAccess(e);
    return e.value;
}

HashMap#get 示意图

3.3 HashMap 的移除方法中的 Hook 点

LinkedHashMap 直接复用 HashMap 的移除方法,在移除节点后,增加 afterNodeRemoval() 回调。

HashMap.java

// 移除节点
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key)/*计算散列值*/, key, null, false, true)) == null ? null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
                boolean matchValue, boolean movable) {
    Node<K,V>[] tab; 
    Node<K,V> p; 
    int n, index;
    // (n - 1) & hash:散列值转数组下标
    if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        // 省略遍历桶的代码,具体分析见 HashMap 源码讲解
        // 删除 node 节点
        if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {
            // 省略删除节点的代码,具体分析见 HashMap 源码讲解
            ++modCount;
            --size;
            // Hook:删除节点回调
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

HashMap#remove 示意图


4. LinkedHashMap 源码分析

这一节,我们来分析 LinkedHashMap 中主要流程的源码。

4.1 LinkedHashMap 的属性

  • LinkedHashMap 继承于 HashMap,并且新增 headtail 指针指向链表的头尾节点(与 LinkedList 类似的头尾节点);
  • LinkedHashMap 的双链表节点 Entry 继承于 HashMap 的单链表节点 Node,而 HashMap 的红黑树节点 TreeNode 继承于 LinkedHashMap 的双链表节点 Entry。

节点继承关系

LinkedHashMap.java

public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> {
    // 头指针
    transient LinkedHashMap.Entry<K,V> head;
    // 尾指针
    transient LinkedHashMap.Entry<K,V> tail;
    // 是否按照访问顺序排序
    final boolean accessOrder;

    // 双向链表节点
    static class Entry<K,V> extends HashMap.Node<K,V> {
        // 前驱指针和后继指针(用于双向链表)
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next/*单链表指针(用于散列表的冲突解决)*/) {
            super(hash, key, value, next);
        }
    }
}

LinkedList.java

public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable {
    // 头指针(// LinkedList 中也有类似的头尾节点)
    transient Node<E> first;
    // 尾指针
    transient Node<E> last;

    // 双向链表节点
    private static class Node<E> {
        // 节点数据
        // (类型擦除后:Object item;)
        E item;
        // 前驱指针
        Node<E> next;
        // 后继指针
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }
}

LinkedHashMap 的属性很好理解的,不出意外的话又有小朋友出来举手提问了:

  • 🙋🏻‍♀️疑问 1:HashMap.TreeNode 和 LinkedHashMap.Entry 的继承顺序是不是反了?

我的理解是作者希望简化节点类型,所以采用了非常规的做法(不愧是标准库)。由于 Java 是单继承的,如果按照常规的做法让 HashMap.TreeNode 直接继承 HashMap.Node,那么在 LinkedHashMap 中就需要区分 LinkedHashMap.Entry 和 LinkedHashMap.TreeEntry,再使用接口统一两种类型。

常规实现

4.2 LinkedHashMap 的构造方法

LinkedHashMap 有 5 个构造方法,作用与 HashMap 的构造方法基本一致,区别只在于对 accessOrder 字段的初始化。

// 带初始容量和装载因子的构造方法
public LinkedHashMap(int initialCapacity, float loadFactor) {
    super(initialCapacity, loadFactor);
    accessOrder = false;
}

// 带初始容量的构造方法
public LinkedHashMap(int initialCapacity) {
    super(initialCapacity);
    accessOrder = false;
}

// 无参构造方法
public LinkedHashMap() {
    super();
    accessOrder = false;
}

// 带 Map 的构造方法
public LinkedHashMap(Map<? extends K, ? extends V> m) {
    super();
    accessOrder = false;
    putMapEntries(m, false);
}

// 带初始容量、装载因子和 accessOrder 的构造方法
// 是否按照访问顺序排序,为 true 表示按照访问顺序排序,默认为 false
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {
    super(initialCapacity, loadFactor);
    this.accessOrder = accessOrder;
}

4.3 LinkedHashMap 如何维护双链表

现在,我们看下 LinkedHashMap 是如何维护双链表的。其实,我们将上一节所有的 Hook 点汇总,会发现这些 Hook 点正好组成了 LinkedHashMap 双向链表的行为:

  • 添加数据: 将数据链接到双向链表的尾节点,时间复杂度为 O(1);
  • 访问数据(包括添加、查询、更新): 将数据移动到双向链表的尾节点,亦相当于先移除再添加到尾节点,时间复杂度为 O(1);
  • 删除数据: 将数据从双向链表中移除,时间复杂度为 O(1);
  • 淘汰数据: 直接淘汰双向链表的头节点,时间复杂度为 O(1)。

LinkedHashMap.java

// -> 1.1 如果节点不存在,则新增节点
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
    // 新建双向链表节点
    LinkedHashMap.Entry<K,V> p = new LinkedHashMap.Entry<K,V>(hash, key, value, e);
    // 添加到双向链表尾部,等价于 LinkedList#linkLast
    linkNodeLast(p);
    return p;
}

// -> 1.1 如果节点不存在,则新增节点
TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
    // 新建红黑树节点(继承于双向链表节点)
    TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
    // 添加到双向链表尾部,等价于 LinkedList#linkLast
    linkNodeLast(p);
    return p;
}

// 添加到双向链表尾部,等价于 LinkedList#linkLast
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
    LinkedHashMap.Entry<K,V> last = tail;
    tail = p;
    if (last == null)
        // last 为 null 说明首个添加的元素,需要修改 first 指针
        head = p;
    else {
        // 将新节点的前驱指针指向 last 
        p.before = last;
        // 将 last 的 next 指针指向新节点
        last.after = p;
    }
}

// 节点插入回调
// evict:是否淘汰最早的节点
void afterNodeInsertion(boolean evict) { // possibly remove eldest
    LinkedHashMap.Entry<K,V> first;
    // removeEldestEntry:是否淘汰最早的节点,即是否淘汰头节点(由子类实现)
    if (evict && (first = head) != null && removeEldestEntry(first)) {
        // 移除 first 节点,腾出缓存空间
        K key = first.key;
        removeNode(hash(key), key, null, false, true);
    }
}

// 移除节点回调
void afterNodeRemoval(Node<K,V> e) { // unlink
    // 实现了标准的双链表移除
    LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
    p.before = p.after = null;
    if (b == null)
        // 删除的是头节点,则修正 head 指针
        head = a;
    else
        // 修正前驱节点的后继指针,指向被删除节点的后继节点
        b.after = a;
    if (a == null)
        // 删除的是尾节点,则修正 tail 指针
        tail = b;
    else
        // 修正后继节点的前驱指针,指向被删除节点的前驱节点
        a.before = b;
}

// 节点访问回调
void afterNodeAccess(Node<K,V> e) { // move node to last
    // 先将节点 e 移除,再添加到链表尾部
    LinkedHashMap.Entry<K,V> last;
    // accessOrder:是否按照访问顺序排序,为 false 则保留插入顺序
    if (accessOrder && (last = tail) != e) {
        // 这两个 if 语句块就是 afterNodeRemoval 的逻辑
        LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a != null)
            a.before = b;
        else
            last = b;
        // 这个 if 语句块就是 linkNodeLast 的逻辑
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
        tail = p;
        ++modCount;
    }
}

// 淘汰判断接口,由子类实现
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
    return false;
}

4.4 LinkedHashMap 的迭代器

与 HashMap 类似,LinkedHashMap 也提供了 3 个迭代器:

  • LinkedEntryIterator: 键值对迭代器
  • LinkedKeyIterator: 键迭代器
  • LinkedValueIterator: 值迭代器

区别在于 LinkedHashMap 自己实现了 LinkedHashIterator。在迭代器遍历时,HashMap 会按照数组顺序遍历桶节点,从开发者的视角看是无序的。而 LinkedHashMap 是按照双向链表的顺序从 head 节点开始遍历,从开发者的视角是可以感知到的插入顺序或访问顺序。

LinkedHashMap.java

abstract class LinkedHashIterator {
    LinkedHashMap.Entry<K,V> next;
    LinkedHashMap.Entry<K,V> current;
    // 修改计数
    int expectedModCount;

    LinkedHashIterator() {
        // 从头结点开始遍历
        next = head;
        // 修改计数
        expectedModCount = modCount;
        current = null;
    }

    public final boolean hasNext() {
        return next != null;
    }

    final LinkedHashMap.Entry<K,V> nextNode() {
        LinkedHashMap.Entry<K,V> e = next;
        // 检查修改计数
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        if (e == null)
            throw new NoSuchElementException();
        current = e;
        next = e.after;
        return e;
    }
    ...
}

4.5 LinkedHashMap 的序列化过程

与 HashMap 相同,LinkedHashMap 也重写了 JDK 序列化的逻辑,并保留了 HashMap 中序列化的主体结构。LinkedHashMap 只是重写了 internalWriteEntries(),按照双向链表的顺序进行序列化,这样在反序列化时就能够恢复双向链表顺序。

HashMap.java

// 序列化过程
private void writeObject(java.io.ObjectOutputStream s) throws IOException {
    int buckets = capacity();
    s.defaultWriteObject();
    // 写入容量
    s.writeInt(buckets);
    // 写入有效元素个数
    s.writeInt(size);
    // 写入有效元素
    internalWriteEntries(s);
}

// 不关心键值对所在的桶,在反序列化会重新映射
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
    Node<K,V>[] tab;
    if (size > 0 && (tab = table) != null) {
        for (int i = 0; i < tab.length; ++i) {
            for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                s.writeObject(e.key);
                s.writeObject(e.value);
            }
        }
    }
}

LinkedHashMap.java

// 重写:按照双向链表顺序写入
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
    for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
        s.writeObject(e.key);
        s.writeObject(e.value);
    }
}

5. 基于 LinkedHashMap 实现 LRU 缓存

这一节,我们来实现一个简单的 LRU 缓存。理解了 LinkedHashMap 维护插入顺序和访问顺序的原理后,相信你已经知道如何实现 LRU 缓存了。

  • 首先,我们已经知道,LinkedHashMap 支持 2 种排序模式,这是通过构造器参数 accessOrder 标记位控制的。所以,这里我们需要将 accessOrder 设置为 true 表示使用 LRU 模式的访问顺序排序。
  • 其次,我们不需要实现淘汰数据的逻辑,只需要重写淘汰判断接口 removeEldestEntry(),当缓存数量大于缓存容量时返回 true,表示移除最早的节点。

MaxSizeLruCacheDemo.java

public class MaxSizeLruCacheDemo extends LinkedHashMap {

    private int maxElements;

    public LRUCache(int maxSize) {
        super(maxSize, 0.75F, true);
        maxElements = maxSize;
    }

    protected boolean removeEldestEntry(java.util.Map.Entry eldest) {
        // 超出容量
        return size() > maxElements;
    }
}

6. 总结

  • 1、LRU 是一种缓存淘汰算法,与其他淘汰算法相比,LRU 算法利用了 “局部性原理”,缓存的平均命中率更高;
  • 2、使用双向链表 + 散列表实现的 LRU,在添加、查询、移除和淘汰数据的时间复杂度都是 O(1),这种数据结构也叫哈希链表;

    • 查询数据: 通过散列表定位数据,时间复杂度为 O(1);
    • 淘汰数据: 直接淘汰链表尾节点,时间复杂度为 O(1)。
  • 3、使用 LinkedHashMap 时,主要关注 2 个 API:

    • accessOrder 标记位: LinkedHashMap 同时实现了 FIFO 和 LRU 两种淘汰策略,默认为 FIFO 排序,可以使用 accessOrder 标记位修改排序模式。
    • removeEldestEntry() 接口: 每次添加数据时,LinkedHashMap 会回调 removeEldestEntry() 接口。开发者可以重写 removeEldestEntry() 接口决定是否移除最早的节点(在 FIFO 策略中是最早添加的节点,在 LRU 策略中是最久未访问的节点)。
  • 4、Android 的 LruCache 内存缓存和 DiskLruCache 磁盘缓存中,都直接复用了 LinkedHashMap 的 LRU 能力。

今天,我们分析了 LinkedHashMap 的实现原理。在下篇文章里,我们来分析 LRU 的具体实现应用,例如 Android 标准库中的 LruCache 内存缓存。

可以思考一个问题,LinkedHashMap 是非线程安全的,Android 的 LruCache 是如何解决线程安全问题的?请关注 小彭说 · Android 开源组件 专栏。


参考资料

目录
相关文章
|
27天前
|
缓存 算法 数据挖掘
深入理解缓存更新策略:从LRU到LFU
【10月更文挑战第7天】 在本文中,我们将探讨计算机系统中缓存机制的核心——缓存更新策略。缓存是提高数据检索速度的关键技术之一,无论是在硬件还是软件层面都扮演着重要角色。我们会详细介绍最常用的两种缓存算法:最近最少使用(LRU)和最少使用频率(LFU),并讨论它们的优缺点及适用场景。通过对比分析,旨在帮助读者更好地理解如何选择和实现适合自己需求的缓存策略,从而优化系统性能。
42 3
|
30天前
|
缓存 分布式计算 NoSQL
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
60 2
|
3月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
171 1
|
4月前
|
缓存 Python
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
|
3月前
|
存储 缓存 Java
|
3月前
|
存储 缓存 算法
Python 从零开始实现一个简单的LRU缓存
Python 从零开始实现一个简单的LRU缓存
37 0
|
4月前
|
缓存 算法 前端开发
前端 JS 经典:LRU 缓存算法
前端 JS 经典:LRU 缓存算法
88 0
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
|
30天前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
67 6