vLLM 性能优化实战:批处理、量化与缓存配置方案

简介: 本文深入解析vLLM高性能部署实践,揭秘如何通过continuous batching、PagedAttention与前缀缓存提升吞吐;详解批处理、量化、并发参数调优,助力实现高TPS与低延迟平衡,真正发挥vLLM生产级潜力。

很多团队把它vLLM 当 demo 跑,但是其实这没把它系统能力发挥出来。这篇文章将介绍怎么让 vLLM 真正干活——持续输出高令牌/秒,哪些参数真正有用,以及怎么在延迟和成本之间做取舍。

先说 vLLM 到底好在哪

vLLM 提供 OpenAI 兼容的 API,核心是 continuous batching 加上 PagedAttention。PagedAttention 用分页管理 KV 缓存,内存复用做得很高效,能同时跑多个序列,GPU 占用率拉满,还能流式输出令牌。

并且工作流程不复杂。请求进来带着 prompt ,调度器把它们切成微批次喂给 GPU,KV 缓存存着注意力的键值对,PagedAttention 按页分配避免碎片。相似的 prompt 可以跨请求复用 KV 页,这就是前缀缓存。并行度和内存怎么分配由你定,这是性能调优的核心。

批处理大小

批处理越大吞吐量越高,但尾部延迟也跟着涨。得先想清楚场景:聊天类交互要的是低 TTFT(首令牌延迟),批次小点;批量任务或者 RAG 管道追求高吞吐,TTFT 长点能接受。

网关层得限制单请求的最大令牌数,不然一个大请求能把队列堵死。多个中等大小的 prompt 比少数巨型 prompt 效果好,continuous batching 在形状规整时效率最高。如果能按输出长度分类(短/中/长),就给每类跑独立的 vLLM worker,延迟会稳定很多。

前缀缓存算是白捡的性能

两个请求共享相同前缀时——系统提示词、few-shot 示例、检索的引导文本——vLLM 直接复用 KV 缓存。这是零成本加速。

怎么设计才能吃到这个红利?可以及逆行系统提示词跨租户标准化,few-shot 示例保持完全一致,变量放用户输入里别放示例里。RAG 场景就把模板和指令缓存起来,每个请求只追加检索到的事实。

量化可以性能倍增器

AWQ 或 RTN 做 4-bit 权重量化,内存省了不少,perplexity也几乎不掉,这是服务端点的默认选择。KV 缓存也能量化,缓存占用减少意味着能跑更多并发序列,但代价是超长生成时质量可能轻微下降。

经验如下:GPU 内存紧张、调度器塞不下足够多序列时就量化。更多并行序列带来的收益通常远超全精度权重那点质量提升。

并发参数这几个很重要

--max-num-seqs

限制并发序列数,A100 级别的卡从 64-128 起步,往上调到 TTFT 开始变差为止。

--max-model-len

别设成模型理论最大值,除非真需要那么长,限制小点意味着 KV 页小,并行度高。

--tensor-parallel-size

是把大模型切到多卡,NVLink 这种快速互连是必须的,批次得够大才能掩盖通信开销。

--gpu-memory-utilization

留 10-15% 余量,应对流量尖峰时的 OOM。

千万别把所有参数都拉满然后指望调度器自己搞定,这个一定要实测。

容量规划看令牌率而不是 QPS

两个请求 QPS 一样,令牌的预算可能天差地别。规划容量要用输入加输出的令牌/秒。设 C 是选定批处理形状下单 GPU 的持续令牌/秒,容量约等于 GPU 数量x C x 利用率。利用率保持在 70-85% 能吸收峰值,再高就该横向扩了。

有时候 90% 的利用率会莫名其妙的慢,所以尽量不要到达这个临界值。

生产配置

 # pull a vLLM image with your preferred model
docker run --gpus all --rm -p 8000:8000 \
  -v /models:/models \
  vllm/server:latest \
  --model /models/Qwen2.5-7B-Instruct-AWQ \
  --dtype auto \
  --tensor-parallel-size 1 \
  --max-num-seqs 128 \
  --max-model-len 4096 \
  --gpu-memory-utilization 0.9 \
  --enforce-eager \
   --trust-remote-code false

AWQ 模型做了权重 4-bit 量化,部署密度高。

--enforce-eager

避免混合流量下漫长的 CUDA graph 预热,流量模式统一且要 CUDA graph 优化时再关掉。

--trust-remote-code=false

在多租户环境保持安全。

OpenAI 兼容的请求写法如下:

 curl http://localhost:8000/v1/chat/completions \
  -H"Content-Type: application/json" \
  -d'{
    "model":"Qwen2.5-7B-Instruct-AWQ",
    "messages":[{"role":"user","content":"Write a haiku about GPUs"}],
    "stream":true,
    "max_tokens":128,
    "temperature":0.3
   }'

调度和公平性

工作负载如果混了短生成和长生成,跑两个池:短任务优先池和长任务池。TTFT 保持合理范围,批量吞吐也不损失。准入控制在网关层做,按租户限令牌速率,vLLM 专心批处理不需要管流控。背压机制也是要有的,慢消费者会拖累流式输出,所以一定要将服务器端超时和最大队列长度设好。

RAG 令牌长度

7B 模型的上下文控制在 2-3k 令牌,再长注意力成本是二次方,质量提升有限。检索后修剪也很重要,删掉近似重复的块,只留高分句子。静态前导加动态事实的结构,前缀缓存命中率最高。

监控必须要有

仪表板最少得有这些:TTFT 的 p50 和 p95,令牌/秒(输入、输出、总计),活跃序列数和 KV 缓存利用率,批处理大小分布随时间变化,调度器队列长度和准入拒绝率,OOM 和驱逐事件。

活跃序列数饱和或者 KV 缓存接近 100% 的时候 TTFT p95 飙升,说明容量到头了,横向扩或者减模型长度。

常见坑和方案

全局最大上下文设太大,KV 页巨大并行度差,解决方法是设合理的

--max-model-len

,长上下文只在需要时开单独层级。

每个租户 prompt 随机没法复用前缀,解决方案是标准化样板用模板。

输出不限制单个请求霸占调度器,可以在端点层面限

max_tokens

所有流量打一个 worker,而GPU 闲置,需要在智能网关后跑多 worker 按桶分片。

仪表板只看 QPS 属于监控的混乱,要把令牌/秒和 TTFT 提到优先级,缓存饱和加告警。

总结

vLLM 的核心价值不是 prompt 技巧,是让 GPU 一直干活。令牌当预算单位,前缀设计好复用,上下文窗口别乱开,并发上限设实际点,吞吐量自然上去而且不会突然垮。

https://avoid.overfit.cn/post/89022caa9a4346b290c212c0c9bbaa57

作者:Nexumo

目录
相关文章
|
3天前
|
弹性计算 人工智能 安全
云上十五年——「弹性计算十五周年」系列客户故事(第二期)
阿里云弹性计算十五年深耕,以第九代ECS g9i实例引领算力革新。携手海尔三翼鸟、小鹏汽车、微帧科技等企业,实现性能跃升与成本优化,赋能AI、物联网、智能驾驶等前沿场景,共绘云端增长新图景。
|
9天前
|
存储 弹性计算 人工智能
【2025云栖精华内容】 打造持续领先,全球覆盖的澎湃算力底座——通用计算产品发布与行业实践专场回顾
2025年9月24日,阿里云弹性计算团队多位产品、技术专家及服务器团队技术专家共同在【2025云栖大会】现场带来了《通用计算产品发布与行业实践》的专场论坛,本论坛聚焦弹性计算多款通用算力产品发布。同时,ECS云服务器安全能力、资源售卖模式、计算AI助手等用户体验关键环节也宣布升级,让用云更简单、更智能。海尔三翼鸟云服务负责人刘建锋先生作为特邀嘉宾,莅临现场分享了关于阿里云ECS g9i推动AIoT平台的场景落地实践。
【2025云栖精华内容】 打造持续领先,全球覆盖的澎湃算力底座——通用计算产品发布与行业实践专场回顾
|
8天前
|
人工智能 自然语言处理 自动驾驶
关于举办首届全国大学生“启真问智”人工智能模型&智能体大赛决赛的通知
关于举办首届全国大学生“启真问智”人工智能模型&智能体大赛决赛的通知
|
8天前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
|
9天前
|
编解码 自然语言处理 文字识别
Qwen3-VL再添丁!4B/8B Dense模型开源,更轻量,仍强大
凌晨,Qwen3-VL系列再添新成员——Dense架构的Qwen3-VL-8B、Qwen3-VL-4B 模型,本地部署友好,并完整保留了Qwen3-VL的全部表现,评测指标表现优秀。
661 7
Qwen3-VL再添丁!4B/8B Dense模型开源,更轻量,仍强大
|
4天前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
|
11天前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
787 2
|
2天前
|
编解码 文字识别 算法
一张图能装下“千言万语”?DeepSeek-OCR 用视觉压缩长文本,效率提升10倍!
一张图能装下“千言万语”?DeepSeek-OCR 用视觉压缩长文本,效率提升10倍!
344 10