AI语音机器人,人工智能系统转型相应的配套和未来趋势

简介: 客服行业尽管有着行业、地域、机制及业务的差异,转型的战略定位、技术选型、策略运用方面也有所差别,但转型背后仍有着深层次的共性,也是企业转型面临的难点和风险。博主从事智能系统行业有六年多了,有关系统方面问题请找博主,看他名字可以微他一起技术交流学习客服行业智能化转型的风险————思维、文化和领导层的心智才是风险的最终根源战略实施的探索和稳定性,客服行业仍有不少企业在数字化转型方面一直运用简单的逻辑,即现有的业务经营模式固定不变,仅仅通过扩展微信、微博和手机客户端形成服务渠道的拓展,但对于智能化新环境而言,基于语音呼叫单纯叠加的战略有效性明显不足。依旧无法摆脱客服人

客服行业尽管有着行业、地域、机制及业务的差异,转型的战略定位、技术选型、策


略运用方面也有所差别,但转型背后仍有着深层次的共性,也是企业转型面临的难点


和风险。博主从事智能系统行业有六年多了,有关系统方面问题请找博主,看他名字可以微他一起技术交流学习


客服行业智能化转型的风险


————思维、文化和领导层的心智才是风险的最终根源


战略实施的探索和稳定性,客服行业仍有不少企业在数字化转型方面一直运用简


单的逻辑,即现有的业务经营模式固定不变,仅仅通过扩展微信、微博和手机客


户端形成服务渠道的拓展,但对于智能化新环境而言,基于语音呼叫单纯叠加的


战略有效性明显不足。依旧无法摆脱客服人员之前的普遍困境。而基于机器人的


智能应答、智能导航和数据运营方式与传统业务运营有较大的差别,哪些领域和


技术选择需要迅速进入?哪些又不能操之过急?每个企业基本情况都不一样,因


此转型战略的实施是一个不稳定、逐步探索的过程。没有最正确的模板,只有最


合适的路径。


01


对环境判断和反应的敏锐性。部分传统行业的过往成功除了体制垄断以外,共同


的一面是偏保守,虽然近几年传统企业也在拥抱互联网,其客服中心也在探索


多渠道服务,但在环境瞬息万变,机遇转瞬即逝的变化中,传统客服中心一旦


缺乏对环境变化的判断或稍有迟滞,就很可能错失机遇,而数据和技术的竞争


窗口期一旦错失,转型的成功几率就很可能降低。更何况智能机器人的服务效


率取决于行业知识和特性的长期训练,因此先发优势显得更加突出。


02


传统文化和互联网文化的融合。新技术的使用并不困难,两微一端等新服务渠道


的拓展也相对容易,最困难的往往是企业文化的革新,少数大型传统企业的管


理者,往往会对自身的思维模式、操作模式形成定式。习惯了以前传统IT时代


外包的模式。假如企业的领导者没有足够的魄力,没有从依赖IT外包的模式转


变为企业自身学习成长和寻求赋能的模式,那么固有的思路、传统的文化、不


确定性的风险,都可能会形成转型变革的阻力。


03


转型持久性和耐性的认知。传统客服中心企业管理者如果始终抱着大考的心态去


转型,没有足够的耐心也是不够的,任何一种转型都不是瞬间或短期可以完成


04




客服行业智能化转型的配套/


——变革配套的核心不是分享,而是协同


(1)组织变革——未来将演变成基于业务和技术共同创造客户价值的共生性组织


图:客服行业智能化转型的企业配套资源 数据来源:ACRC分析


转型相应的配套和未来趋势


的,积跬步才能致千里,获胜的关键不在于瞬间的爆发,而在于途中的坚持和依据环


境、技术、竞争和资源的变化动态调整,灵活改变策略,调动资源、妥善应对。这种


企业文化和领导者心理才是企业转型成败的根源。


彼得.德鲁克(Peter Drucker)说过,组织的重点必须放在机会上,而不是放在问题


上。随着互联网和人工智能的发展,客服行业面临的外部环境发生了巨大的变化,在技


术越来越深的渗透到业务中、技术和业务密不可分的今天,客服行业的创新企业必不可


少要进行组织变革。技术和业务联合协作,将两者能力沉淀成基础底座,为人工智能知


识图谱和机器人训练提供支撑,最终提升用户智能服务的有效性,实现降本增效。


例如某移动运营商一方面根据和阿里的合作模式,成立客服中心智能运营团队,将话务


运营团队和技术团队进行融合(之前完全分开);另外一方面将语音知识库和文本知识


库团队进行打通融合共用,减少知识库维护工作量。其中运营岗位梳理业务需求,把流


程设计清楚,技术岗位把流程落实到系统中去,还有一些熟悉业务接口的岗位配合技术


岗位实现对接。该移动运营商利用智能化变革对组织“瘦身健体”。全力提升组织效率


和战斗力。


(2)人才配套----专业和业务的综合体,与生俱来的数据意识形态


未来的客服骨干人员除基本的业务专业知识储备以外,还将具备机器人训练、数据运


营、知识图谱维护、人机协同等多维度的能力,客服人员需要适应客服行业智能化融


技术和业务联合协作,将两者能力


沉淀为基础底座,为人工智能只是


图谱的机器人训练提供支撑


未来客服骨干人员除基本的业务专


业知识储备外,还将具备机器人训


练、知识图谱维护、数据运营、人


机协同等多维度的知识


技术+业务+运营联合团队 复合型人才、数据技术人才




客服行业智能化转型演进趋势/


——“客户智能服务中心”跨界产业联合,实现业务生态繁荣


图:客服中心智能变革演进阶段 数据来源:ACRC分析


转型相应的配套和未来趋势


合的变化和趋势,未来高素质的技术和业务的复合型人才以及数据技术人才将成为客


服行业人力构成的主流。


除了企业自身的数字化创新和转型以外,在产业和技术快速变化的今天,跨界合作,生


态对接已经成为主流趋势,无论是跨领域合作、跨平台对接、还是跨行业创新,客服产


业的合作正在逐步走向深水区。


客户服务在每个行业都是企业良性运营的重中之重,但不同行业的行业属性差别较大,


因此客服的智能化转型离不开具有各行业KnowHow的产业合作伙伴。阿里巴巴作为智


能客服的技术提供平台,一直在和各个行业的客服集成合作伙伴开展密切合作,基于阿


里智能客服的ASR(语音识别),TTS(语音合成)、NLU(自然语言理解)等技


术,通过生态联合支撑赋能各行业客服中心实现智能化转型。


此外,未来的客服中心,基于与客户每天接触的海量数据,除了对内服务以外,对外也


将具备与生态第三方对接的能力,将可进一步拓宽业务的边界,例如在了解用户业务需


求和行为的数据解构方面,可以与类似高德这样的位置信息平台进行联合,一方面精确


了解客户的地理位置和行动轨迹,另外一方面可以结合当地场景利用APP进行业务和营




转型相应的配套和未来趋势


销的精准推送;在对外营销的精细化运营方面,除了传统外呼/催缴/满意度调查以外,


线上还可以与类似阿里妈妈这样的高聚类互联网流量平台进行合作,实现广告流量的互


通;在业务合作领域,可以广泛联合产业链上下游资源,实现业务的富生态;在收费支


付方面,适应用户行为习惯,联合支付宝进行扫码支付等。


今天的客服行业,应该跨越成本中心的束缚,变得更加开放,更加有业务价值。而未来


的客服行业,甚至会逐渐演变成客户智能服务中心或客户智能运营中心,利用数据洞察


,不仅反哺和优化自身业务,甚至还可与第三方进行外部合作,拓展更大的商业价值。


对于客服行业的发展而言,联接比拥有更重要,协同比分享更有价值;开放边界、共生


共荣,是未来领先企业的核心特征


相关文章
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
32 6
|
8天前
|
人工智能 自动驾驶 数据安全/隐私保护
人工智能的伦理困境:我们如何确保AI的道德发展?
【10月更文挑战第21天】随着人工智能(AI)技术的飞速发展,其在各行各业的应用日益广泛,从而引发了关于AI伦理和道德问题的讨论。本文将探讨AI伦理的核心问题,分析当前面临的挑战,并提出确保AI道德发展的建议措施。
|
8天前
|
人工智能 搜索推荐 安全
人工智能与未来社会:探索AI在教育领域的革命性影响
本文深入探讨了人工智能(AI)技术在教育领域的潜在影响和变革。通过分析AI如何个性化学习路径、提高教学效率以及促进教育资源的公平分配,我们揭示了AI技术对教育模式的重塑力量。文章还讨论了实施AI教育所面临的挑战,包括数据隐私、伦理问题及技术普及障碍,并提出了相应的解决策略。通过具体案例分析,本文旨在启发读者思考AI如何助力构建更加智能、高效和包容的教育生态系统。
|
1天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
17天前
|
机器学习/深度学习 人工智能 数据可视化
深度学习之可解释人工智能(Explainable AI,XAI)
可解释人工智能(XAI)是一个旨在使AI决策过程透明和可理解的研究领域。随着AI和机器学习技术在多个行业中的应用变得越来越广泛,其决策过程的透明度和可解释性变得极其重要。
34 0
|
23天前
|
机器学习/深度学习 移动开发 自然语言处理
基于人工智能技术的智能导诊系统源码,SpringBoot作为后端服务的框架,提供快速开发,自动配置和生产级特性
当身体不适却不知该挂哪个科室时,智能导诊系统应运而生。患者只需选择不适部位和症状,系统即可迅速推荐正确科室,避免排错队浪费时间。该系统基于SpringBoot、Redis、MyBatis Plus等技术架构,支持多渠道接入,具备自然语言理解和多输入方式,确保高效精准的导诊体验。无论是线上医疗平台还是大型医院,智能导诊系统均能有效优化就诊流程。
|
1天前
|
人工智能 自然语言处理 自动驾驶
深入理解ChatGPT:下一代人工智能助手的开发与应用
【10月更文挑战第27天】本文深入探讨了ChatGPT的技术原理、开发技巧和应用场景,展示了其在语言理解和生成方面的强大能力。文章介绍了基于Transformer的架构、预训练与微调技术,以及如何定制化开发、确保安全性和支持多语言。通过实用工具如GPT-3 API和Fine-tuning as a Service,开发者可以轻松集成ChatGPT。未来,ChatGPT有望在智能家居、自动驾驶等领域发挥更大作用,推动人工智能技术的发展。
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在医疗健康领域的应用
【10月更文挑战第25天】 本文深入探讨了人工智能(AI)技术在医疗健康领域的现状与未来趋势。通过对AI技术在疾病诊断、治疗方案优化、患者管理等方面的应用案例分析,揭示了AI如何助力提高医疗服务效率和质量。文章还讨论了AI技术面临的挑战,包括数据安全、伦理问题以及技术普及的障碍,并提出了相应的解决策略。通过本文,读者将对AI在医疗健康领域的潜力和挑战有一个全面的认识。
18 2
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的无限可能:技术前沿与应用实践
【10月更文挑战第23天】探索人工智能的无限可能:技术前沿与应用实践
|
7天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用及其挑战
【10月更文挑战第22天】人工智能技术正逐渐渗透到我们生活的方方面面,尤其是在医疗领域,它展现出了巨大的潜力。从辅助医生进行疾病诊断到预测患者病情的发展,AI的应用正在改变着传统的医疗模式。然而,随之而来的是一系列挑战,包括数据隐私、算法偏见以及医患关系的重新定位等问题。本文将探讨AI在医疗诊断中的应用实例,并分析面临的主要挑战,以期对未来的医疗AI应用提供深入的见解和建议。