Pytorch 训练技巧

简介: Pytorch 训练技巧

1、指定GPU编号


设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0:os.environ["CUDA_VISIBLE_DEVICES"] = "0"

设置当前使用的GPU设备为0,1号两个设备,名称依次为 /gpu:0、/gpu:1: os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" ,根据顺序表示优先使用0号设备,然后使用1号设备。

指定GPU的命令需要放在和神经网络相关的一系列操作的前面。


2、查看模型每层输出详情


Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。

使用很简单,如下用法:

from torchsummary import summary
summary(your_model, input_size=(channels, H, W))

input_size 是根据你自己的网络模型的输入尺寸进行设置。

pytorch-summarygithub.com


dba18c6e4360983ed81c95ec0eb3fcc4.jpg


3、梯度裁剪(Gradient Clipping)

import torch.nn as nn
outputs = model(data)
loss= loss_fn(outputs, target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()

nn.utils.clip_grad_norm_ 的参数:

parameters – 一个基于变量的迭代器,会进行梯度归一化

max_norm – 梯度的最大范数

norm_type – 规定范数的类型,默认为L2


4、扩展单张图片维度


因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:


import cv2
import torch
image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())
img = image.view(1, *image.size())
print(img.size())
# output:
# torch.Size([h, w, c])
# torch.Size([1, h, w, c])

import cv2
import numpy as np
image = cv2.imread(img_path)
print(image.shape)
img = image[np.newaxis, :, :, :]
print(img.shape)
# output:
# (h, w, c)
# (1, h, w, c)

或(感谢知乎用户coldleaf的补充)

import cv2
import torch
image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())
img = image.unsqueeze(dim=0)  
print(img.size())
img = img.squeeze(dim=0)
print(img.size())
# output:
# torch.Size([(h, w, c)])
# torch.Size([1, h, w, c])
# torch.Size([h, w, c])

tensor.unsqueeze(dim):扩展维度,dim指定扩展哪个维度。

tensor.squeeze(dim):去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。


5、独热编码


在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。

import torch
class_num = 8
batch_size = 4
def one_hot(label):
    """
    将一维列表转换为独热编码
    """
    label = label.resize_(batch_size, 1)
    m_zeros = torch.zeros(batch_size, class_num)
    # 从 value 中取值,然后根据 dim 和 index 给相应位置赋值
    onehot = m_zeros.scatter_(1, label, 1)  # (dim,index,value)
    return onehot.numpy()  # Tensor -> Numpy
label = torch.LongTensor(batch_size).random_() % class_num  # 对随机数取余
print(one_hot(label))
# output:
[[0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0.]]



2a9f1e76acbaece81682bf528380ccc5.jpg


Convert int into one-hot formatdiscuss.pytorch.org


6、防止验证模型时爆显存


验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。

with torch.no_grad():
    # 使用model进行预测的代码
    pass


Pytorch 训练时无用的临时变量可能会越来越多,导致 out of memory ,可以使用下面语句来清理这些不需要的变量。


torch.cuda.empty_cache()


更详细的优化可以查看 优化显存使用显存利用问题


7、学习率衰减

import torch.optim as optim
from torch.optim import lr_scheduler
# 训练前的初始化
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1)  # # 每过10个epoch,学习率乘以0.1
# 训练过程中
for n in n_epoch:
    scheduler.step()
    ...


8、冻结某些层的参数


参考:Pytorch 冻结预训练模型的某一层

在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。

我们需要先知道每一层的名字,通过如下代码打印:


net = Network()  # 获取自定义网络结构
for name, value in net.named_parameters():
    print('name: {0},\t grad: {1}'.format(name, value.requires_grad))

假设前几层信息如下:


name: cnn.VGG_16.convolution1_1.weight,  grad: True
name: cnn.VGG_16.convolution1_1.bias,  grad: True
name: cnn.VGG_16.convolution1_2.weight,  grad: True
name: cnn.VGG_16.convolution1_2.bias,  grad: True
name: cnn.VGG_16.convolution2_1.weight,  grad: True
name: cnn.VGG_16.convolution2_1.bias,  grad: True
name: cnn.VGG_16.convolution2_2.weight,  grad: True
name: cnn.VGG_16.convolution2_2.bias,  grad: True

后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:

no_grad = [
    'cnn.VGG_16.convolution1_1.weight',
    'cnn.VGG_16.convolution1_1.bias',
    'cnn.VGG_16.convolution1_2.weight',
    'cnn.VGG_16.convolution1_2.bias'
]

冻结方法如下:

net = Net.CTPN()  # 获取网络结构
for name, value in net.named_parameters():
    if name in no_grad:
        value.requires_grad = False
    else:
        value.requires_grad = True

冻结后我们再打印每层的信息:

name: cnn.VGG_16.convolution1_1.weight,  grad: False
name: cnn.VGG_16.convolution1_1.bias,  grad: False
name: cnn.VGG_16.convolution1_2.weight,  grad: False
name: cnn.VGG_16.convolution1_2.bias,  grad: False
name: cnn.VGG_16.convolution2_1.weight,  grad: True
name: cnn.VGG_16.convolution2_1.bias,  grad: True
name: cnn.VGG_16.convolution2_2.weight,  grad: True
name: cnn.VGG_16.convolution2_2.bias,  grad: True

可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。

最后在定义优化器时,只对requires_grad为True的层的参数进行更新。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
8月前
|
存储 人工智能 PyTorch
基于PyTorch/XLA的高效分布式训练框架
基于PyTorch/XLA的高效分布式训练框架
335 2
|
8月前
|
机器学习/深度学习 数据采集 PyTorch
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
549 0
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
512 0
|
16天前
|
机器学习/深度学习 人工智能 PyTorch
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
本文将系统阐述DPO的工作原理、实现机制,以及其与传统RLHF和SFT方法的本质区别。
68 22
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
|
4月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
183 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
5月前
|
机器学习/深度学习 并行计算 PyTorch
GPU 加速与 PyTorch:最大化硬件性能提升训练速度
【8月更文第29天】GPU(图形处理单元)因其并行计算能力而成为深度学习领域的重要组成部分。本文将介绍如何利用PyTorch来高效地利用GPU进行深度学习模型的训练,从而最大化训练速度。我们将讨论如何配置环境、选择合适的硬件、编写高效的代码以及利用高级特性来提高性能。
933 1
|
5月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与DistributedDataParallel:分布式训练入门指南
【8月更文第27天】随着深度学习模型变得越来越复杂,单一GPU已经无法满足训练大规模模型的需求。分布式训练成为了加速模型训练的关键技术之一。PyTorch 提供了多种工具来支持分布式训练,其中 DistributedDataParallel (DDP) 是一个非常受欢迎且易用的选择。本文将详细介绍如何使用 PyTorch 的 DDP 模块来进行分布式训练,并通过一个简单的示例来演示其使用方法。
626 2
|
5月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
61 0
|
7月前
|
机器学习/深度学习 并行计算 PyTorch
使用PyTorch Profiler进行模型性能分析,改善并加速PyTorch训练
加速机器学习模型训练是工程师的关键需求。PyTorch Profiler提供了一种分析工具,用于测量CPU和CUDA时间,以及内存使用情况。通过在训练代码中嵌入分析器并使用tensorboard查看结果,工程师可以识别性能瓶颈。Profiler的`record_function`功能允许为特定操作命名,便于跟踪。优化策略包括使用FlashAttention或FSDP减少内存使用,以及通过torch.compile提升速度。监控CUDA内核执行和内存分配,尤其是避免频繁的cudaMalloc,能有效提升GPU效率。内存历史记录分析有助于检测内存泄漏和优化批处理大小。
707 1