基于PyTorch/XLA的高效分布式训练框架

简介: 基于PyTorch/XLA的高效分布式训练框架

大模型的崛起带来了前所未有的机遇与挑战。这些模型以其强大的理解力和学习能力,为各种复杂任务提供了解决方案。然而,大模型的成功训练依赖于巨大的计算资源,这对分布式训练技术提出了新的要求。本文将深入探讨阿里云研究员、阿里云人工智能平台PAI技术负责人林伟在GTC2024大会上介绍的TorchAcc框架,这是一个基于PyTorch/XLA的大模型分布式训练框架,旨在解决大模型训练中的算力瓶颈问题。

大模型的挑战与分布式训练的必要性
过去五年中,大模型的规模增长迅速,平均每两年增长15倍,特别是Transformer等语言模型和多模态模型,其规模增长更是惊人。然而,单个GPU的计算能力和显存容量的发展速度远远跟不上模型规模的扩张。这一矛盾直接催生了对分布式训练技术的迫切需求。

分布式训练不再局限于数据并行模式,而是更加重视模型并行策略,以弥补单个计算单元算力与存储提升速度相对于模型规模增长的滞后性。模型并行的分布式训练系统相比数据并行更为复杂,需要根据模型的规模和结构来决定如何恰当地“分割”模型,以实现平衡的计算负载。

TorchAcc框架的核心特性
TorchAcc框架围绕四个核心方面展开:

多样化的并行策略:TorchAcc支持数据并行、模型并行(如算子并行、流水线并行)以及FSDP(FullyShardedDataParallel,又称ZeRO)。它能自动探寻并整合各类并行策略,提供自动化的分布式策略配置方案,并为高级开发者提供半自动化的控制接口。

显存智能分配器:针对显存瓶颈问题,TorchAcc提供了显存智能分配器,通过精细化调度与地址分配策略,提高模型并行训练的效率。

计算与通信优化:随着模型结构的复杂化,优化计算密集度和减少访存开销变得至关重要。TorchAcc通过一系列技术手段,将模型训练过程转化为统一的中间表示层(ModelIR)的graph,并实施多元化的优化策略。

高效的底层执行:TorchAcc将优化后的执行Plan交由底层Backend执行,实现模型训练性能的最大化提升。

TorchAcc的技术实现
TorchAcc的技术实现包括以下几个关键点:

模型计算图的捕获:TorchAcc采用符号式追踪和LazyTensor技术捕获计算图,转化为IRGraph。

并行策略的实现与优化:TorchAcc在FXGraph层面实现数据并行、流水并行和FSDP等策略,并利用PyTorch/XLA的marksharding接口实现张量并行和序列并行。

算子优化:引入FlashAttention技术提升Attention模块的执行效率,并充分利用XLA的Kernelfusion等算子优化功能。

通信优化:通过合并collective通讯算子、异步执行和LatencyHidingScheduler功能,提升分布式训练效率。

显存优化:采用ROAM(ReorderOperatorsandArrangeTensorsAddresstoReduceMemoryUsage)内存优化探索方式,有效降低显存开销。

性能测试与应用
在Llama2-7B模型的性能测试中,TorchAcc展现了显著的性能优势,部分模型的训练过程实现了高达3倍的性能提速。通过显存优化,与原生PyTorch和其他优化方法相比,ROAM节省了显著的显存开销,并在求解时间上实现了显著的缩减。

目录
相关文章
|
3天前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云人工智能平台PAI正式发布自研的 DeepRec Extension(即 DeepRec 扩展),旨在以更低成本,更高效率进行稀疏模型的分布式训练。
|
2天前
|
机器学习/深度学习 PyTorch 算法框架/工具
使用FP8加速PyTorch训练的两种方法总结
在PyTorch中,FP8数据类型用于高效训练和推理,旨在减少内存占用和加快计算速度。虽然官方尚未全面支持,但在2.2版本中引入了`torch.float8_e4m3fn`和`torch.float8_e5m2`。文章通过示例展示了如何利用FP8优化Vision Transformer模型,使用Transformer Engine库提升性能,并探讨了PyTorch原生FP8支持的初步使用方法。实验表明,结合TE和FP8,训练速度可提升3倍,性能有显著增强,特别是在NVIDIA GPU上。然而,PyTorch的FP8支持仍处于试验阶段,可能带来不稳定性。
14 0
|
5天前
|
SQL 分布式计算 Hadoop
Spark分布式内存计算框架
Spark分布式内存计算框架
18 0
|
7天前
|
机器学习/深度学习 分布式计算 调度
机器学习分布式框架Ray
Ray是UC Berkeley RISELab推出的一个高性能分布式执行框架,它比Spark更具计算优势,部署简单,支持机器学习和深度学习的分布式训练。Ray包括节点(head和worker)、本地调度器、object store、全局调度器(GCS),用于处理各种分布式计算任务。它支持超参数调优(Ray Tune)、梯度下降(Ray SGD)、推理服务(Ray SERVE)等。安装简单,可通过`pip install ray`。使用时,利用`@ray.remote`装饰器将函数转换为分布式任务,通过`.remote`提交并用`ray.get`获取结果。5月更文挑战第15天
31 3
|
11天前
|
存储 Java 分布式数据库
【分布式计算框架】HBase数据库编程实践
【分布式计算框架】HBase数据库编程实践
17 1
|
11天前
|
分布式计算 并行计算 Java
【分布式计算框架】 MapReduce编程初级实践
【分布式计算框架】 MapReduce编程初级实践
9 2
|
11天前
|
分布式计算 数据可视化 Hadoop
【分布式计算框架】HDFS常用操作及编程实践
【分布式计算框架】HDFS常用操作及编程实践
7 1
|
11天前
|
分布式计算 Ubuntu Hadoop
【分布式计算框架】hadoop全分布式及高可用搭建
【分布式计算框架】hadoop全分布式及高可用搭建
36 1
|
11天前
|
存储 分布式计算 Hadoop
【分布式计算框架】Hadoop伪分布式安装
【分布式计算框架】Hadoop伪分布式安装
11 2
|
11天前
|
分布式计算 Java Go
Golang深入浅出之-Go语言中的分布式计算框架Apache Beam
【5月更文挑战第6天】Apache Beam是一个统一的编程模型,适用于批处理和流处理,主要支持Java和Python,但也提供实验性的Go SDK。Go SDK的基本概念包括`PTransform`、`PCollection`和`Pipeline`。在使用中,需注意类型转换、窗口和触发器配置、资源管理和错误处理。尽管Go SDK文档有限,生态系统尚不成熟,且性能可能不高,但它仍为分布式计算提供了可移植的解决方案。通过理解和掌握Beam模型,开发者能编写高效的数据处理程序。
143 1