Python Matplotlib库:基本绘图补充

简介: 上期我们讲了 Matplotlib 库的基本语法,并以折线图为例,绘制了我们的第一幅图表。这期我们来说说如何用 Matplotlib 库绘制其他常用图表。plot()是 Matplotlib 库中绘制折线图的方法,而绘制散点图,我们会使用scatter()。在 Matplotlib 库中,我们使用bar()方法来绘制柱状图。使用stem()方法来绘制火柴图。使用step()方法来绘制阶梯图。使用fill_between()方法来填充一段区间。
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页: 小嗷犬的博客
🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。
🥭本文内容:Python Matplotlib库:基本绘图补充

@TOC


1.引言

上期我们讲了 Matplotlib 库的基本语法,并以折线图为例,绘制了我们的第一幅图表。(参见: Python 数据可视化:Matplotlib库的使用

这期我们来说说如何用 Matplotlib 库绘制其他常用图表。


2.散点图

plot()Matplotlib 库中绘制折线图的方法,而绘制散点图,我们会使用 scatter(),它的语法格式如下:
plt.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)

参数说明:

参数 说明
xy 长度相同的数组,也就是我们即将绘制散点图的数据点,输入数据。
s 点的大小,默认 20,也可以是个数组,数组每个参数为对应点的大小。
c 点的颜色,默认蓝色 'b',也可以是个 RGB 或 RGBA 二维行数组。
marker 点的样式,默认小圆圈 'o'。
cmap Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组的时才使用。如果没有申明就是 image.cmap。
norm Normalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。
vminvmax 亮度设置,在 norm 参数存在时会忽略。
alpha 透明度设置,0-1 之间,默认 None,即不透明。
linewidths 标记点的长度。
edgecolors 颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。
plotnonfinite 布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。
**kwargs 其他参数。

代码实例:

统计各班身高体重分布:
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] # 设置字体为黑体
plt.rcParams["axes.unicode_minus"]=False # 防止负号乱码

plt.figure(figsize=(16, 9))
plt.suptitle("各班同学的身高体重分布图")

x1 = [60,42,56,44,60,38,55,48]
x2 = [61,51,55,46,81,44,66,51]
x3 = [70,45,75,60,63,58,71,49]
y1 = [163,153,164,156,165,156,168,157]
y2 = [170,159,171,159,171,160,172,161]
y3 = [178,165,178,165,180,168,180,168]

plt.subplot(221)
plt.scatter(x1,y1,c='b')
plt.title("一班")
plt.xlabel("体重")
plt.ylabel("身高")

plt.subplot(222)
plt.scatter(x2,y2,c='g')
plt.title("二班")
plt.xlabel("体重")
plt.ylabel("身高")

plt.subplot(223)
plt.scatter(x3,y3,c='r')
plt.title("三班")
plt.xlabel("体重")
plt.ylabel("身高")

plt.subplot(224)
plt.scatter(x1,y1,c='b')
plt.scatter(x2,y2,c='g')
plt.scatter(x3,y3,c='r')
plt.title("汇总图")
plt.xlabel("体重")
plt.ylabel("身高")
plt.legend(["一班","二班","三班"])

plt.show()
效果图:
散点图

3.柱状图

Matplotlib 库中,我们使用 bar()方法来绘制柱状图,它的语法格式如下:
plt.bar(x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs)

参数说明:

参数 说明
x 浮点型数组,柱形图的 x 轴数据。
height 浮点型数组,柱形图的高度。
width 浮点型数组,柱形图的宽度。
bottom 浮点型数组,底座的 y 坐标,默认 0。
align 柱形图与 x 坐标的对齐方式,'center' 以 x 位置为中心,这是默认值。<br/> 'edge':将柱形图的左边缘与 x 位置对齐。<br/>要对齐右边缘的条形,可以传递负数的宽度值及 align='edge'。
**kwargs 其他参数。
或者使用 barh()绘制横向的柱状图,语法格式如下:
plt.barh(y, width, height=0.8, left=None, *, align='center', **kwargs)

参数说明:

参数 说明
y 浮点型数组,柱形图的 y 轴数据。
width 浮点型数组,柱形图的宽度。
height 浮点型数组,柱形图的高度。
left 浮点型数组,底座的 x 坐标,默认 0。
align 柱形图与 y 坐标的对齐方式,'center' 以 y 位置为中心,这是默认值。<br/> 'edge':将柱形图的左边缘与 y 位置对齐。<br/>要对齐上边缘的条形,可以传递负数的宽度值及 align='edge'。
**kwargs 其他参数。

代码实例:

对比参赛人员的表现分:
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码

plt.figure(figsize=(8, 7))
plt.suptitle("参赛人员的表现分")

people = ('Tom', 'Dick', 'Harry', 'Slim', 'Jim')
performance = (4, 5, 8, 3, 6)

plt.bar(people, performance)

plt.show()
效果图:
柱状图

4.火柴图

Matplotlib 库中,我们可以使用 stem()方法来绘制火柴图,它的语法格式如下:
plt.stem([locs,] heads, linefmt=None, markerfmt=None, basefmt=None)

参数说明:

参数 说明
locs 对于垂直火柴图,为火柴的 x 坐标。对于水平火柴图,为火柴的 y 坐标。
heads 对于垂直火柴图,为火柴的 y 坐标。对于水平火柴图,为火柴的 x 坐标。
linefmt 线条格式字符,可指定线条的颜色和样式。
markerfmt 标记格式字符,可指定火柴头的颜色和样式。
basefmt 基线格式字符,可指定基线的颜色和样式。
orientation 默认为 'vertical',如果为 'vertical',将生成垂直火柴图,否则将生成水平火柴图。
bottom 默认为0,基线的 y/x 坐标(取决于方向)。
label 图例中火柴的标签。

代码实例:

对比参赛人员的表现分:
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码

plt.figure(figsize=(8, 7))
plt.suptitle("参赛人员的表现分")

x = ("张三", "李四", "王五", "赵六", "孙七")
y = (4, 5, 8, 3, 6)

plt.stem(x, y, linefmt="r-.",markerfmt="gs",basefmt="b-")

plt.show()
效果图:
火柴图

5.阶梯图

Matplotlib 库中,我们可以使用 step()方法来绘制阶梯图,它的语法格式如下:
plt.step(x, y, [fmt], *, data=None, where='pre', **kwargs)

参数说明:

参数 说明
xy 节点的 x,y 坐标值。
fmt 格式字符串,与plot()方法的format_string参数类似。
data 两个Iterables,包含已标记数据的标签名称。
where 设置阶梯所在位置,取值范围为{'pre', 'post', 'mid'},默认值为'pre'。
**kwargs plot()

代码实例:

import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = ["SimHei"]  # 设置字体为黑体
plt.rcParams["axes.unicode_minus"] = False  # 防止负号乱码

plt.figure(figsize=(8, 7))

x = list(range(1, 6))
y = (4, 5, 8, 3, 6)

plt.step(x, y, "b-.s")

plt.show()
效果图:
阶梯图

6.填充

Matplotlib 库中,我们可以使用 fill_between()方法来填充一段区间,它的语法格式如下:
plt.fill_between(x, y1, y2=0, where=None, interpolate=False, step=None, *, data=None, **kwargs)

参数说明:

参数 说明
x 节点的 x 坐标值。
y1 第一条曲线节点的 y 坐标值。
y2 第二条曲线节点的 y 坐标值。
where 排除填充区间。
**kwargs 其他参数。

代码实例:

import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] # 设置字体为黑体
plt.rcParams["axes.unicode_minus"]=False # 防止负号乱码

plt.figure(figsize=(16, 9))
plt.suptitle("函数图")

f1 = lambda x:x**0.5
f2 = lambda x:x
f3 = lambda x:x**2

x = list(range(0,6))
y1 = [f1(i) for i in x]
y2 = [f2(i) for i in x]
y3 = [f3(i) for i in x]

plt.plot(x,y1,'b-v')
plt.plot(x,y2,'g--1')
plt.plot(x,y3,'r-.s')
plt.fill_between(x,y1,y2,color='b',alpha=0.2)
plt.fill_between(x,y2,y3,color='r',alpha=0.2)
plt.title("对比图")
plt.legend(["√x","x","x^2"])

plt.show()
效果图:
填充
目录
相关文章
|
23小时前
|
缓存 自然语言处理 数据处理
Python自然语言处理面试:NLTK、SpaCy与Hugging Face库详解
【4月更文挑战第16天】本文介绍了Python NLP面试中NLTK、SpaCy和Hugging Face库的常见问题和易错点。通过示例代码展示了如何进行分词、词性标注、命名实体识别、相似度计算、依存关系分析、文本分类及预训练模型调用等任务。重点强调了理解库功能、预处理、模型选择、性能优化和模型解释性的重要性,帮助面试者提升NLP技术展示。
15 5
|
1天前
|
Python
如何使用Python的Plotly库创建交互式图表?
Plotly是Python的交互式图表库,支持多种图表类型,如折线图、散点图、柱状图。使用步骤包括安装库、导入模块、准备数据、创建图表对象、添加数据和设置属性,最后显示或保存图表。
15 6
|
1天前
|
机器学习/深度学习 数据采集 算法
请解释Python中的Sklearn库以及它的主要用途。
Sklearn是Python的机器学习库,提供数据预处理、特征选择、分类回归、聚类、模型评估和参数调优等工具。包含监督和无监督学习算法,如SVM、决策树、K-means等,并提供样例数据集便于实践。它是进行机器学习项目的重要资源。
9 1
|
1天前
|
XML 数据采集 自然语言处理
请解释Python中的BeautifulSoup库以及它的主要用途。
BeautifulSoup是Python的HTML/XML解析库,用于数据提取和网页抓取。它提供树形结构解析文档,支持查找、访问和修改元素。主要用途包括网页抓取、数据清洗、自动化测试、内容生成、网站开发及与其他库集成,如Requests和Scrapy。适用于各种数据处理场景。
6 1
|
1天前
|
索引 Python
如何使用Python的Pandas库进行数据透视表(pivot table)操作?
使用Pandas在Python中创建数据透视表的步骤包括:安装Pandas库,导入它,创建或读取数据(如DataFrame),使用`pd.pivot_table()`指定数据框、行索引、列索引和值,计算聚合函数(如平均分),并可打印或保存结果到文件。这允许对数据进行高效汇总和分析。
7 2
|
2天前
|
数据可视化 数据挖掘 定位技术
Python 基于 Matplotlib 实现数据可视化(二)
Python 基于 Matplotlib 实现数据可视化(二)
14 0
|
2天前
|
数据可视化 数据挖掘 Python
Python中数据分析工具Matplotlib
【4月更文挑战第14天】Matplotlib是Python的数据可视化库,能生成多种图表,如折线图、柱状图等。以下是一个绘制简单折线图的代码示例: ```python import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.figure() plt.plot(x, y) plt.title(&#39;简单折线图&#39;) plt.xlabel(&#39;X轴&#39;) plt.ylabel(&#39;Y轴&#39;) plt.show() ```
6 1
|
3天前
|
机器学习/深度学习 算法 搜索推荐
SciPy线性代数库详解:矩阵运算与方程求解
【4月更文挑战第17天】SciPy的`scipy.linalg`模块提供丰富的线性代数功能,包括矩阵运算、线性方程组求解、特征值问题和奇异值分解等,基于BLAS和LAPACK库确保效率与稳定性。关键操作如矩阵乘法使用`dot`函数,转置和共轭转置用`transpose`和`conj`,求解线性方程组有`solve`和迭代方法,计算特征值和向量用`eig`,奇异值分解则依赖`svd`。这个库对科学计算、数据分析和机器学习等领域至关重要。
|
1月前
|
数据可视化 数据挖掘 API
Python数据可视化利器Matplotlib详解
本文将深入探讨Python中常用的数据可视化库Matplotlib,介绍其基本概念、常见绘图函数和实例应用。通过学习Matplotlib,读者可以掌握如何利用Python进行数据可视化,展示数据分析结果。
|
1月前
|
数据可视化 数据挖掘 Python
Python数据可视化:探索Matplotlib的强大功能
数据可视化在如今的数据分析和展示中扮演着至关重要的角色。本文将介绍Python中常用的数据可视化库Matplotlib,深入探讨其功能和应用,帮助读者更好地利用Matplotlib进行数据可视化。

热门文章

最新文章