【Python数据分析 - 9】:DataFrame结构中自定义行列索引(Pandas篇)

简介: 【Python数据分析 - 9】:DataFrame结构中自定义行列索引(Pandas篇)

pandas设置行列索引


本次以股票的数据为例


数据准备&DataFrame结构



  • 模块导入
import pandas as pd
import numpy as np



  • numpy准备数据
stock = np.random.normal(0, 1, [500, 504])




  • 使用pd.DataFrame(),将数据变为DataFrame结构


  • 生成的DataFrame中默认的行列索引为数字

2bba4bc13fe74093a915add17d4dfc2c.png

5e15a5c12cb64fe386e9eec25bac867c.png


自定义行索引


  • 准备行索引数据

a15e1036651f4021bc510454e7e211c1.png


设置行索引,在将数据变为DataFrame结构时添加:index=stock_index

625da87cd9ab4b30bad0737b4d87afbd.png

结果展示9402eaab2d934145a945f2a252f41232.png


自定义列索引


pandas中时间序列 - date_range函数


函数功能:生成一个固定频率的时间索引,使用此函数时,须指定start,end或periods,否则报错。


语法:pandas.date_range(start=None, end=None, periods=None, freq=‘D’, tz=None, normalize=False, name=None, closed=None, **kwargs)


主要参数说明:


   periods:固定时期,取值为整数或None,设置为整数时会从根据start的时期往后取到periods天。


   freq:日期偏移量,取值为string或DateOffset,默认为’D’;当设置为’B‘时表示除去周六和周日。


   normalize:若参数为True表示将start、end参数值正则化到午夜时间戳。


   name:生成时间索引对象的名称,取值为string或None。


   closed:当closed=‘left’ 表示在返回的结果基础上,再取左开右闭的结果;当closed='right’表示在返回的结果基础上,再取左闭右开的结果。



列索引设置


  • 准备列索引数据

6d63a6b94c2d40499a41d22129e42a38.png


列索引数据展示

3a5e168e9f9f45039975b6edc1712e43.png


设置列索引,在将数据变为DataFrame结构时添加:columns=date

18a1a0c8f8ee4aa4b171deab6eab5140.png

结果展示


b6c35876d2f042bda30bf2dad02d48ca.png


相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
137 71
|
2月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
154 73
|
3月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
114 0
|
1月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
81 22
|
2月前
|
数据挖掘 数据处理 索引
Pandas数据重命名:列名与索引为标题
Pandas 是强大的数据分析工具,支持灵活的数据结构和操作。本文介绍如何使用 Pandas 对 `DataFrame` 的列名和索引进行重命名,包括直接赋值法、`rename()` 方法及索引修改。通过代码示例展示了具体操作,并讨论了常见问题如名称冲突、数据类型不匹配及 `inplace` 参数的使用。掌握这些技巧可使数据更清晰易懂,便于后续分析。
87 29
|
2月前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
93 5
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
72 2
|
3月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
83 2
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
3月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集

热门文章

最新文章

推荐镜像

更多