深度强化学习之gym扫地机器人环境的搭建(持续更新算法,附源码,python实现)

简介: 深度强化学习之gym扫地机器人环境的搭建(持续更新算法,附源码,python实现)

想要源码可以点赞关注收藏后评论区留下QQ邮箱


本次利用gym搭建一个扫地机器人环境,描述如下:


在一个5×5的扫地机器人环境中,有一个垃圾和一个充电桩,到达[5,4]即图标19处机器人捡到垃圾,并结束游戏。同时获得+3的奖赏。左下角[1,1]处有一个充电桩,机器人到达充电桩可以充电且不再行走,获得+1的奖赏。环境中间[3,3]处有一个障碍物,机器人无法通过。


扫地机器人具体流程如下


1:每局游戏开始 机器人初始位置位于左上角 即[1,5]处


2:游戏进行过程中 机器人将在地图上不断进行探索


3:机器人遇到障碍物时无法通过 保持原地不动 获得-10的奖赏


4:地图上有两个终止状态,一个为捡到垃圾,获得+5的奖赏,另一个为达到充电桩进行充电进行充电  获得+1奖赏


5:扫地机器人到达终止状态 即一个情节结束 机器人回到初始位置


扫地机器人环境搭建


  部分代码如下

# 深度强化学习——原理、算法与PyTorch实战,代码名称:代02-搭建扫地机器人的Gym环境.py
import gym
from gym import spaces
from gym.utils import seeding
import sys
from time import sleep
import signal
class Grid(object):
    def __init__(
            self,
            x: int = None,  # 坐标x
            y: int = None,  # 坐标y
            grid_type: int = 0,  # 类别值(0:空;1:障碍或边界)
            enter_reward: float = 0.0):  # 进入该格子的即时奖励
        self.x = x
        self.y = y
        self.grid_type = grid_type
        self.enter_reward = enter_reward
        self.name = "X{0}-Y{1}".format(self.x, self.y)
    def __str__(self):
        return "Grid: {name:{3}, x:{0}, y:{1}, grid_type:{2}}".format(self.x, self.y, self.grid_type, self.name)
class GridMatrix(object):
    def __init__(
            self,
            n_width: int,  # 水平方向格子数
            n_height: int,  # 竖直方向格子数
            default_type: int = 0,  # 默认类型,0-空
            default_reward: float = 0.0,  # 默认即时奖励值
    ):
        self.n_height = n_height
        self.n_width = n_width
        self.default_reward = default_reward
        self.default_type = default_type
        self.grids = None  # list(Grid) 将二维的格子世界中的格子存储在一维的列表中
        self.len = n_width * n_height  # 格子数
        self.reset()
    def reset(self):
        self.grids = []
        for x in range(self.n_height):
            for y in range(self.n_width):
                self.grids.append(Grid(x, y, self.default_type, self.default_reward))
    def get_grid(self, x, y=None):
        """
        获取一个格子信息
        args: 坐标信息,由x,y表示或仅有一个类型为tuple的x表示
        return: grid object
        """
        xx, yy = None, None
        if isinstance(x, int):
            xx, yy = x, y
        elif isinstance(x, tuple):
            xx, yy = x[0], x[1]
        assert (0 <= xx < self.n_width and 0 <= yy < self.n_height)  # 任意坐标值应在合理区间
        index = yy * self.n_width + xx  # 二维坐标展开为一维线性坐标
        return self.grids[index]
    def set_reward(self, x, y, reward):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.enter_reward = reward
        else:
            raise ("grid doesn't exist")
    def set_type(self, x, y, grid_type):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.grid_type = grid_type
        else:
            raise ("grid doesn't exist")
    def get_reward(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.enter_reward
    def get_type(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.grid_type
class GridWorldEnv(gym.Env):
    metadata = {'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30}
    def __init__(
            self,
            n_width: int = 5,  # 格子世界宽度(以格子数计)
            n_height: int = 5,  # 高度
            u_size=40,  # 当前格子绘制尺寸
            default_reward: float = 0,
            default_type=0):
        self.n_width = n_width
        self.n_height = n_height
        self.default_reward = default_reward
        self.default_type = default_type
        self.u_size = u_size
        self.screen_width = u_size * n_width  # 场景宽度
        self.screen_height = u_size * n_height  # 场景长度
        self.grids = GridMatrix(n_width=self.n_width,
                                n_height=self.n_height,
                                default_reward=self.default_reward,
                                default_type=self.default_type)
        self.reward = 0  # for rendering
        self.action = None  # for rendering
        # 0,1,2,3 represent left, right, up, down
        self.action_space = spaces.Discrete(4)
        # 观察空间由low和high决定
        self.observation_space = spaces.Discrete(self.n_height * self.n_width)
        self.state = None  # 格子世界的当前状态
        self.ends = [(0, 0), (4, 3)]  # 终止格子坐标,可以有多个
        self.start = (0, 4)  # 起始格子坐标,只有一个
        self.types = [(2, 2, 1)]
        self.rewards = [(0, 0, 1), (4, 3, 5), (2, 2, -10)]
        self.refresh_setting()
        self.viewer = None  # 图形接口对象
        self.seed()  # 产生一个随机子
        self.reset()


相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
192 85
|
3月前
|
自然语言处理 算法 机器人
智能电话销售机器人源码搭建部署系统电话机器人源码
智能电话销售机器人源码搭建部署系统电话机器人源码
57 4
|
3月前
|
自然语言处理 机器人 语音技术
电销机器人源码搭建(各个版本机器人部署)
电销机器人源码搭建(各个版本机器人部署)
60 3
|
3月前
|
人工智能 自然语言处理 机器人
智能语音机器人底层系统设计逻辑机器人源码系统逻辑
简介: — 1 —智能客服背景智能语音客服机器人是在传统的客服系统基础上,集成了语音识别、语义理解、知识图谱、深度学习等多项智能交互技术,能准确理解用户的意图或提问,再根据丰富的内容和海量知识图谱,给予用户满意的回答。目前已广泛应用于金融、保险、汽车、房产、电商、政府等多个领域。
|
3月前
|
机器学习/深度学习 监控 机器人
量化交易机器人系统开发逻辑策略及源码示例
量化交易机器人是一种通过编程实现自动化交易决策的金融工具。其开发流程包括需求分析、系统设计、开发实现、测试优化、部署上线、风险管理及数据分析。示例中展示了使用Python实现的简单双均线策略,计算交易信号并输出累计收益率。
|
3月前
|
机器学习/深度学习 监控 算法
现货量化交易机器人系统开发策略逻辑及源码示例
现货量化交易机器人系统是一种基于计算机算法和数据分析的自动化交易工具。该系统通过制定交易策略、获取和处理数据、生成交易信号、执行交易操作和控制风险等环节,实现高效、精准的交易决策。系统架构可采用分布式或集中式,以满足不同需求。文中还提供了一个简单的双均线策略Python代码示例。
|
3月前
|
机器学习/深度学习 人工智能 运维
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
130 0
|
3月前
|
机器人 人机交互 语音技术
智能电销机器人源码部署安装好后怎么运行
销售打电销,其中90%电销都是无效的,都是不接,不要等被浪费了这些的精力,都属于忙于筛选意向客户,大量的人工时间都耗费在此了。那么,有这种新型的科技产品,能为你替代这些基本的工作,能为你提升10倍的电销效果。人们都在关心智能语音客服机器人如何高效率工作的问题,今天就为大家简单的介绍下:1、智能筛选系统:电销机器人目前已经达到一个真人式的专家级的销售沟通水平,可以跟客户沟通,筛选意向,记录语音和文字通话记录,快速帮助电销企业筛选意向客户,大大的节约了筛选时间成本和人工成本。2、高速运转:在工作效率上,人工电销员,肯定跟不上智能语音机器人,机器人自动拨出电话,跟客户交谈。电话机
125 0
|
4月前
|
传感器 IDE 机器人
基于Arduino的扫地机器人
基于Arduino的扫地机器人
124 1
|
4月前
|
机器人
lanqiao OJ 199 扫地机器人
lanqiao OJ 199 扫地机器人
24 0

推荐镜像

更多