基础算法:二分查找 搜索插入位置

简介: 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

1 问题描述

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

示例 4:

输入: nums = [1,3,5,6], target = 0
输出: 0

示例 5:

输入: nums = [1], target = 0
输出: 0
from typing import List
class Solution:
    def searchInsert(nums: List[int], target: int) -> int:
        #在此之间填写代码
if __name__ == "__main__":
    print(Solution.searchInsert([1,3,5,6],5))
    print(Solution.searchInsert([1,3,5,6],2))
    print(Solution.searchInsert([1,3,5,6],7))
    print(Solution.searchInsert([1,3,5,6],0))
    print(Solution.searchInsert([1],0))

2 解题思路

  • 标签:二分查找
  • 如果该题目暴力解决的话需要O(n)的时间复杂度,但是如果二分的话则可以降低到O(logn)的时间复杂度
  • 二分查找整体思路为:先设定左侧下标 left 和右侧下标 right,再计算中间下标 mid
  • 每次根据 nums[mid] 和 target 之间的大小进行判断,相等则直接返回下标,nums[mid] < target 则 left 右移,nums[mid] > target 则 right 左移
  • 查找结束如果没有相等值则返回 left,该值为插入位置

3 解题方法

from typing import List
class Solution:
    def searchInsert(nums: List[int], target: int) -> int:
        left,right=0,len(nums)-1
        while left<=right:
            m=(left+right)//2
            if nums[m]>target:right=m-1
            elif nums[m]<target:left=m+1
            else:
                return m
        return left
if __name__ == "__main__":
    print(Solution.searchInsert([1,3,5,6],5))
    print(Solution.searchInsert([1,3,5,6],2))
    print(Solution.searchInsert([1,3,5,6],7))
    print(Solution.searchInsert([1,3,5,6],0))
    print(Solution.searchInsert([1],0))
  • 第1-3,13-18行: 题目中已经给出的信息,运行代码时要根据这些代码进行编辑
  • 第4行: 设置双指针left、right,分别从左、右遍历列表nums
  • 第5行: 设置循环,当left左指针小于right右指针时,列表还未遍历完,继续循环
  • 第6行: 左指针小于右指针时,定义变量m为left和right的中位数(二分查找中的二分)
  • 第7行: 判断此中位数索引对应的数值是否大于目标数值,若是,则令右指针等于m-1(若目标在列表中,此时右指针索引对应的数值一定大于或等于目标数)
  • 第8行: 判断此中位数索引对应的数值是否小于于目标数值,若是,则令左指针等于m+1(若目标在列表中,此时左指针索引对应的数值一定小于或等于目标数)
  • 第9-10行: 若既不大于又不小于目标数值,直接则以找到目标数,直接返回其索引
  • 第6-10行: 在此循环中,可以一直保证目标数target一直在left左指针和right右指针之间
  • 第11行: 若循环结束还未遇到目标数值,则目标数值不在列表中,此时根据题意返回其插入的位置索引,即在列表中比目标值大一点的值的索引。由于循环结束后,left左指针大于right右指针,所以插入位置为left指针对应的位置,则返回left值

算法讲解

这里用到了基础算法:二分查找,简单讲解下这个算法:

二分查找法

如果要查找的数据已经事先排好序了,就可以使用二分查找法来进行查找以升序数列为例,比较一个元素与数列中的中间位置的元素的大小,如果比中间位置的元素大,则继续在后半部分的数列中进行二分查找;如果比中间位置的元素小,则在数列的前半部分进行比较;如果相等,则找到了元素的位置。每次比较的数列长度都会是之前数列的一半,直到找到相等元素的位置或者最终没有找到要找的元素。

算法复杂度

二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.时间复杂度:因为每次查找都会比上一次少一半的范围,最多只需要比较log2(n)次,所以时间复杂度为O(logn)。

分析

二分查找法必须事先经过排序,且要求所有被查数据都必须加载到内存中方能进行。此法适用于不需增删的静态数据

发散

常见的查找方法还有:顺序查找法、插值查找法、斐波拉契查找法、哈希查找法等,有兴趣的同学可以去研究一下。

相关文章
|
4月前
|
算法
【算法】二分算法——搜索插入位置
【算法】二分算法——搜索插入位置
|
1月前
|
算法 搜索推荐 数据库
二分搜索:高效的查找算法
【10月更文挑战第29天】通过对二分搜索的深入研究和应用,我们可以不断挖掘其潜力,为各种复杂问题提供高效的解决方案。相信在未来的科技发展中,二分搜索将继续发挥着重要的作用,为我们的生活和工作带来更多的便利和创新。
49 1
|
2月前
|
算法 C# 索引
C#二分查找算法
C#二分查找算法
|
2月前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
66 2
|
2月前
|
存储 算法 C语言
【C语言】二分查找算法
【C语言】二分查找算法
|
2月前
|
消息中间件 存储 算法
一文搞懂二分查找算法!
一文搞懂二分查找算法!
120 0
|
2月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
31 0
|
2月前
|
存储 算法 C++
【搜索算法】 跳马问题(C/C++)
【搜索算法】 跳马问题(C/C++)
|
2月前
|
人工智能 算法 Java
【搜索算法】数字游戏(C/C++)
【搜索算法】数字游戏(C/C++)