python-手写数字识别改进+TensorBoard(TensorFlow可视化)

简介: python-手写数字识别改进+TensorBoard(TensorFlow可视化)

手写数字识别的改进:将识别准确率提高到98%以上:


import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
#读取mnist数据集 如果没有则会下载
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少批次
n_batch = mnist.train.num_examples // batch_size
#定义两个占位符
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
lr = tf.Variable(0.001,dtype=tf.float32)
#创建简单的神经网络
#通常这样初始化
#W = tf.Variable(tf.truncated_normal([784,10]))#权值
#b = tf.Variable(tf.zeros([10]))#偏置值
W1 = tf.Variable(tf.truncated_normal([784,500],stddev=0.1))#权值
b1 = tf.Variable(tf.zeros([500])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob)
W2 = tf.Variable(tf.truncated_normal([500,250],stddev=0.1))#权值
b2 = tf.Variable(tf.zeros([250])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob)
W = tf.Variable(tf.truncated_normal([250,10],stddev=0.1))
b = tf.Variable(tf.zeros([10])+0.1)
#预测值
prediction = tf.nn.softmax(tf.matmul(L2_drop,W)+b)
#二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.AdamOptimizer(lr).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#预测数据与样本比较,如果相等就返回1 求出标签
#结果存放在布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#进行训练
with tf.Session() as sess:
    sess.run(init)
    for i in range(31):#周期
        sess.run(tf.assign(lr,0.001*(0.95**i)))
        for batch in range(n_batch):#批次
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        train_acc = sess.run(accuracy, feed_dict={x: mnist.train.images, y: mnist.train.labels, keep_prob: 1.0})
        lr_show = sess.run(lr)
        print("周期 :"+ str(i) + "预测准确率:" +  str(acc)+ "学习率:" +  str(lr_show))

TensorBoard的网络结构


用tensorboard来画神经网络的结构。

需要先定义一个命名空间name_scope。

然后加一句用于创建新文件夹和画图:

然后logs文件夹下就会出现一个新的文件。

之后在windows下打开Anaconda Prompt,路径改到当前磁盘的目录下,比如"d:"

视频里说打开命令行,但是我的电脑里打开命令行不承认tensorboard这个命令,见下:

在Anaconda Prompt下输入:"tensorboard --logdir=logs",‘=‘’后面加logs文件夹所在的路径,因为本身就在当前文件夹下,所以直接输入logs就可以了。

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
#读取mnist数据集 如果没有则会下载
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少批次
n_batch = mnist.train.num_examples // batch_size
#命名空间
with tf.name_scope('input'):
    #定义两个占位符
    x = tf.placeholder(tf.float32,[None,784],name='x-input')
    y = tf.placeholder(tf.float32,[None,10],name='y-input')
with tf.name_scope('layer'):
    #创建简单的神经网络
    #群值
    with tf.name_scope('wight'):
        W = tf.Variable(tf.zeros([784,10]))
    #偏置值
    with tf.name_scope('biases'):
        b = tf.Variable(tf.zeros([10]))
    #预测值
    with tf.name_scope('wx_plus_b'):
        wx_plus_b = tf.matmul(x,W)+b
    with tf.name_scope('softmax'):
        prediction = tf.nn.softmax(wx_plus_b)
#二次代价函数
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
    #预测数据与样本比较,如果相等就返回1 求出标签
    #结果存放在布尔型列表中
    with tf.name_scope('correct_prediction'):
        correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    with tf.name_scope('accuracy'):
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#进行训练
with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/',sess.graph)
    for i in range(1):#周期
        for batch in range(n_batch):#批次
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("周期 :"+ str(i) + "准确率:" +  str(acc))

流程图:

image.png

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 运行次数
max_steps = 1001
# 图片数量
image_num = 3000
# 文件路径
DIR = "D:/Embedded Code/Python_Demo/Tensorflow/"
# 定义会话
sess = tf.Session()
# 载入图片
embedding = tf.Variable(tf.stack(mnist.test.images[:image_num]), trainable=False, name='embedding')
# 参数概要
def variable_summaries(var):
    with tf.name_scope('summaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean', mean)  # 平均值
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev', stddev)  # 标准差
        tf.summary.scalar('max', tf.reduce_max(var))  # 最大值
        tf.summary.scalar('min', tf.reduce_min(var))  # 最小值
        tf.summary.histogram('histogram', var)  # 直方图
# 命名空间
with tf.name_scope('input'):
    # 这里的none表示第一个维度可以是任意的长度
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    # 正确的标签
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')
# 显示图片
with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.summary.image('input', image_shaped_input, 10)
with tf.name_scope('layer'):
    # 创建一个简单神经网络
    with tf.name_scope('weights'):
        W = tf.Variable(tf.zeros([784, 10]), name='W')
        variable_summaries(W)
    with tf.name_scope('biases'):
        b = tf.Variable(tf.zeros([10]), name='b')
        variable_summaries(b)
    with tf.name_scope('wx_plus_b'):
        wx_plus_b = tf.matmul(x, W) + b
    with tf.name_scope('softmax'):
        prediction = tf.nn.softmax(wx_plus_b)
with tf.name_scope('loss'):
    # 交叉熵代价函数
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
    # 使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# 初始化变量
sess.run(tf.global_variables_initializer())
with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
        # 结果存放在一个布尔型列表中
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))  # argmax返回一维张量中最大的值所在的位置
    with tf.name_scope('accuracy'):
        # 求准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  # 把correct_prediction变为float32类型
        tf.summary.scalar('accuracy', accuracy)
# 产生metadata文件
if tf.gfile.Exists(DIR + 'projector/projector/metadata.tsv'):
    tf.gfile.DeleteRecursively(DIR + 'projector/projector/metadata.tsv')
with open(DIR + 'projector/projector/metadata.tsv', 'w') as f:
    labels = sess.run(tf.argmax(mnist.test.labels[:], 1))
    for i in range(image_num):
        f.write(str(labels[i]) + '\n')
projector_writer = tf.summary.FileWriter(DIR + 'projector/projector', sess.graph)
saver = tf.train.Saver()
config = projector.ProjectorConfig()
embed = config.embeddings.add()
embed.tensor_name = embedding.name
embed.metadata_path = DIR + 'projector/projector/metadata.tsv'
embed.sprite.image_path = DIR + 'projector/data/mnist_10k_sprite.png'
embed.sprite.single_image_dim.extend([28, 28])
projector.visualize_embeddings(projector_writer, config)
# 合并所有的summary
merged = tf.summary.merge_all()
for i in range(max_steps):
    # 每个批次100个样本
    batch_xs, batch_ys = mnist.train.next_batch(100)
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y: batch_ys}, options=run_options,run_metadata=run_metadata)
    projector_writer.add_run_metadata(run_metadata, 'step%03d' % i)
    projector_writer.add_summary(summary, i)
    if i % 100 == 0:
        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        print("Iter " + str(i) + ", Testing Accuracy= " + str(acc))
saver.save(sess, DIR + 'projector/projector/a_model.ckpt', global_step=max_steps)
projector_writer.close()
sess.close()

image.png


目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
115 55
|
15天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
97 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
14天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
74 7
|
27天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
83 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
84 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
57 3
下一篇
DataWorks