Yarn分布式集群操作系统

简介: Apache Hadoop YARN 是 apache Software Foundation Hadoop的子项目,为分离Hadoop2.0资源管理和计算组件而引入。YARN的诞生缘于存储于HDFS的数据需要更多的交互模式,不单单是MapReduce模式。Hadoop2.0 的YARN 架构提供了更多的处理框架,不再强迫使用MapReduce框架。

Yarn分布式集群操作系统



Apache Hadoop YARN 是 apache Software Foundation Hadoop的子项目,为分离Hadoop2.0资源管理和计算组件而引入。YARN的诞生缘于存储于HDFS的数据需要更多的交互模式,不单单是MapReduce模式。Hadoop2.0 的YARN 架构提供了更多的处理框架,不再强迫使用MapReduce框架。


Yarn定位: 分布式集群操作系统


1、资源管理和调度

2、支持多个不同计算框架

3、Mapreduce框架彻底重构

1.介绍下Yarn的框架?(重要)

Yarn的框架也是经典的主从结构,和HDFS的一样,大体上yarn由一个ResourceManager和多个NodeManager构成,RM为主节点,NM为从节点。

image.png


image.png


(1) 抽象解读:


资源级别:

Resource Manger :链家总部 ----分配资源

NodeManager :链家分店店长 --- 监管工作,检查定期美容院分店

美容院总部--开100家分店


任务级别:

ApplicationManager:美容院老板--监控分店

Contianer: 美容店分店----干活


ResourceManager:

1、接收客户端请求

2、为系统资源分配

3、与NM进行心跳交互,监控集群

4、调度组件Scheduler


RM挂掉: 单点故障:基于Zookeeper实现HA,主提供服务, 备同步主的信息,如果主挂掉,立即主备切换

ApplicationManager/ApplicationMaster (MR任务启动时候jps有MRAppmaster,任务完成就没了)

1、应用程序的Master

2、每一个Job对应一个AM

3、AM和RM不在一个机器

4、AM申请RM资源调度

5、AM联合NM监控job


AM挂掉: RM负责重启 无需重新运行已完成的任务


NodeManager:(只管内存资源)

1、对应1.0TaskTracker的角色

2、负责启动应用程序的Container

3、监控内部容器资源使用情况,心跳RM

NM挂掉: 心跳消失,RM通知AM进一步处理


Container:

1、任务运行环境的封装

2、AM及普通任务均运行在Container中

3、资源代表

container数量=min(2*cores, 1.8*disks, 总内存大小/最小容量)

具体解读:

ResourceManager是一个全局的资源管理器,负责整个系统的资源调度管理和分配,包括处理客户端请求、启动并监控ApplicationMaster,监控NodeManager,以及分配和调度资源。

ResourceManager中由两个组件构成: Schedule调度器和ApplicationManager应用程序管理器

Schedule调度器会根据容量、队列等限制条件,对应用程序的资源需求进行资源分配。(调度器有三种:先进先出调度器,容量调度器和均分调度器)


ApplicationManager则主要负责管理整个系统中所有应用程序,接受job请求,为应用分配一个Container来运行ApplicationMaster并管理,它和ApplicationMaster的区别是Master运行在NodeManger上的,而ApplicationManager是ResourceManager内部的一个组件。


ApplicationMaster

负责管理yarn内运行的应用程序的每个实例,负责协调来自ResourceManager的资源,并通过NodeManager监控容器的执行和资源使用情况。


NodeManager

在集群上有多个,它负责每个节点上的资源使用,处理ApplicationManager的请求,以及负责接受ResourceManager的资源分配命令,分配具体的Container给应用,同时还将Container的使用情况报告给ResourceManager。

这里的Container实际上是一个资源抽象概念,代表系统上分配的资源,包括内存、磁盘、IO等。


(2)具体工作过程如下:


1. 当客户端应用程序向ResourceManager提交应用需要的资源请求后,ResourceManager中的ApplicationManager接受到请求,并返回一个Container给NodeManger,告诉NodeManager启动一个ApplicationMaster实例。

2.ApplicationMaster启动后向ResourceManager注册,此时客户端可以和ApplicationMaster直接交互,并告诉它需要的资源请求;后续ApplicationMaster继续发送资源请求给ResourceManager,待ResourceManager的Schedule处理后返回具体的Container信息,ApplicationMaster接收到资源信息后会分配给各个NodeManager来启动运行job任务(比如mr程序,内部是多个map task、reduce task)。

3. 在运行过程中,客户端和ApplicationMaster保持交互,可以得知程序的运行情况。ApplicationMaster此时主要监控和管理任务运行,而NodeManager会定时向ResourceManager汇报自身的运行状况和Container的使用信息,待程序运行完毕后,ApplicationMaster关闭,并向ResourceManager归还所有Container。

概括来说其过程如下:

应用程序提交 --> 申请资源 --> 启动ApplicationMaster --> 申请运行任务的Container

--> 分发Container --> 运行task任务 --> task任务结束 --> 回收Container。

     

总结:

Yarn 工作流程,一个应用程序的运行过程

1.用户client将应用程序提交到RM上

2.RM为应用程序ApplicationMaster申请资源,并且与nodemanager心跳通信,来启动Application Master

3.ApplicationMaster与RM进行通信,为内部要执行的任务申请资源,一旦得到资源后,Application Master和Nodemanager通信,来启动对应任务

4.所有任务完成ApplicationMaster向RM注销,整个应用程序结束。

        另外JobHistoryServer(作业历史服务,记录在yarn中调度的作业历史运行情况) 和 Timeline Server(写日志数据),需要手动开启。

2.Yarn的动态性是指什么?

是指多个应用程序的ApplicationMaster动态地和ResourceManager进行沟通,不断地申请资源,释放,再申请,再释放资源的过程。

3.Yarn的调度器有哪三种?他们的区别是什么?(重要)

yarn中有三种调度器选择:

FIFO Scheduler(先进先出调度器),


Capacity Scheduler(容量调度器),


Fair Scheduler(均分调度器)


三种调度器区别


hadoop1.x使用的默认调度器就是FIFO。FIFO采用队列方式将一个一个job任务按照时间先后顺序进行服务,比较好理解,哪个任务先进来就先完成它,在继续下一个任务。


hadoop2.x使用的默认调度器是Capacity Scheduler。Capacity Schedule调度器以队列为单位划分资源,队列有独立的资源,队列的结构和资源是可以进行配置的。


Fair Scheduler调度器会为所有job任务动态调整系统资源,且是平均分配的形式,让任务公平的共享集群资源


目录
相关文章
|
1月前
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
37 3
YARN(Hadoop操作系统)的架构
|
1月前
|
存储 Kubernetes 数据安全/隐私保护
k8s对接ceph集群的分布式文件系统CephFS
文章介绍了如何在Kubernetes集群中使用CephFS作为持久化存储,包括通过secretFile和secretRef两种方式进行认证和配置。
32 5
|
1月前
|
资源调度 分布式计算 Hadoop
搭建YARN集群
文章介绍了如何搭建YARN集群,包括启动HDFS集群、修改YARN配置文件、启动ResourceManager和NodeManager节点,并提供了用于管理Hadoop集群的自定义脚本。
29 2
|
2月前
|
存储 NoSQL 算法
MongoDB保姆级指南(中):从副本集群、分片集群起航,探索分布式存储的趋势!
本文一起来聊聊MongoDB集群,顺带以MongoDB集群为起点,共同探讨一下分布式存储的发展趋势~
109 15
|
1月前
|
分布式计算 资源调度 Hadoop
在YARN集群上运行部署MapReduce分布式计算框架
主要介绍了如何在YARN集群上配置和运行MapReduce分布式计算框架,包括准备数据、运行MapReduce任务、查看任务日志,并启动HistoryServer服务以便于日志查看。
37 0
|
2月前
|
人工智能 监控 虚拟化
操作系统的演变:从单任务到多任务,再到并发和分布式
随着计算技术的发展,操作系统经历了从简单的单任务处理到复杂的多任务、并发处理,再到现代的分布式系统的转变。本文将探索这一演变过程中的关键里程碑,以及它们如何塑造我们今天使用的计算机系统的架构和性能。
|
3月前
|
SQL 弹性计算 资源调度
云服务器 ECS产品使用问题之bin/spark-sql --master yarn如何进行集群模式运行
云服务器ECS(Elastic Compute Service)是各大云服务商阿里云提供的一种基础云计算服务,它允许用户租用云端计算资源来部署和运行各种应用程序。以下是一个关于如何使用ECS产品的综合指南。
|
3月前
|
人工智能 分布式计算 物联网
操作系统的演变:从单任务到多任务再到并发和分布式
在数字时代的浪潮中,操作系统作为计算机硬件与应用程序之间的桥梁,其发展史是一部技术革新与需求演进的史诗。本文将带领读者穿梭于操作系统的时空隧道,从早期简单而原始的单任务系统出发,一路见证它如何逐步进化为支持多任务、并发执行乃至分布式计算的复杂系统。我们将一探究竟,是什么推动了这些转变,它们又是如何影响我们日常的技术实践与生活的。
48 1
|
2月前
|
资源调度 Oracle Java
实时计算 Flink版产品使用问题之在YARN集群上运行时,如何查看每个并行度的详细处理数据情况
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
存储 缓存 NoSQL
高并发架构设计三大利器:缓存、限流和降级问题之Redis用于搭建分布式缓存集群问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之Redis用于搭建分布式缓存集群问题如何解决
下一篇
无影云桌面