【无人机】基于Matlab实现高效局部地图搜索算法附论文

简介: 【无人机】基于Matlab实现高效局部地图搜索算法附论文

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

This paper studies the optimal unmanned aerial vehicle (UAV) placement problem for wireless networking. The UAV operates as a flying wireless relay to provide coverage extension for a base station (BS) and deliver capacity boost to a user shadowed by obstacles. While existing methods rely on statistical models for potential blockage of a direct propagation link, we propose an approach capable of leveraging local terrain information to offer performance guarantees. The proposed method allows to strike the best trade-off between minimizing propagation distances to ground terminals and discovering good propagation conditions. The algorithm only requires several propagation parameters, but it is capable to avoid deep propagation shadowing and is proven to find the globally optimal UAV position. Only a local exploration over the target area is required, and the maximum length of search trajectory is linear to the geographical scale. Hence, it lends itself to online search. Significant throughput gains are found when compared to other positioning approaches based on statistical propagation models.

具体模型见https://xueshu.baidu.com/usercenter/paper/show?paperid=14170ca0ug5a0ju0nt6q0ek0vx244295&site=xueshu_se

⛄ 部分代码

% Massive simulation

close all

clear

addpath(genpath('lib')),

Nue = 10000;    % <- reduce this number to shorter simulation time (coarser results)

DATA = load('citymap/urbanMapSingleUserK2.mat');

U = DATA.U; PosBS = DATA.PosBS;

DATA = load('citymap/losStatistics.mat');

losStat.Plos = DATA.Plos;

losStat.ElvAngles = DATA.ElvAngles;

clear DATA

load('citymap/topologyK2.mat');

U.K = 2;

if U.K == 2

   U.Alpha = [-21.4, -30.3];

   U.Beta =[-36.92, -38.42];

elseif U.K == 3

   U.Alpha = [-22, -28, -36];

   U.Beta =[-28, -24, -22];

else

   error('K should be 2 or 3.');

end

U.A0 = -20.8; U.B0 = -38.5;

U.A1 = U.Alpha(1); U.B1 = U.Beta(1);

U.A2 = U.Alpha(2); U.B2 = U.Beta(2);

Noise_dBm = -80;

Power_BS_dBm = 33;

Power_UAV_dBm = 33;

U.Noise = 10^(Noise_dBm/10) / 1000; % Watt in linear scale

U.Pb = 10^(Power_BS_dBm/10) / 1000;

U.Pd = 10^(Power_UAV_dBm/10) / 1000;

U.Hbs = 45;     % meter, BS height

U.Hmin = 45;    % meter, minimum UAV operation height

U.Hdrone = 50;  % meter, UAV search height

stepSizeMeter = 5;  % UAV search step size

fun = @(x,y) max(-log2(1 + U.Pd * real(x)), -log2(1 + U.Pb * real(y)));

fun0 = @(x) -log2(1 + U.Pb * x);

% Ergodic capacity

SNRs_dB = -10:2:20; Ks_dB = [9, -Inf];

Rerg = capacity_ergodic(Ks_dB, SNRs_dB);

fun1 = @(x,y) max(- max(0, ppval(spline(SNRs_dB, Rerg(1, :)), 10 * log10(U.Pd * real(x)))), ...

                 - log2(1 + U.Pb * real(y))); % UAV-UE_LOS(K-factor = 9dB,

             

fun2 = @(x,y) max(- max(0, ppval(spline(SNRs_dB, Rerg(2, :)), 10 * log10(U.Pd * real(x)))), ...

                 - log2(1 + U.Pb * real(y))); % UAV-UE_NLOS, Rayleigh fading

%%

N_scheme = 6;

tic

Nue = min(size(Topology, 1), Nue);

Rates0 = zeros(Nue, N_scheme);

strongUserIds = zeros(Nue, 1);

failIds = zeros(Nue, 1);

parfor i = 1:Nue

   

   PosUE = Topology{i}.PosUE;

   Blds = Topology{i}.Blds;

   BldTypes = Topology{i}.BldTypes;

   BldLines = Topology{i}.BldLines;

   BldHeight = Topology{i}.BldHeight;

   Nbld = size(Blds, 1);

   

   los = IsLosK(PosUE, [PosBS, U.Hbs], BldLines, BldHeight, U.Hdrone, BldTypes);

   if los == 1

       strongUserIds(i) = 1;

       % continue    % We are only interested in the case where the direct BS-user link is blocked

   end

   

   urbanMap = struct();

   urbanMap.BldLines = BldLines;

   urbanMap.BldHeight = BldHeight;

   urbanMap.BldTypes = BldTypes;

   

   % Direct BS-user link

   k = round((1 - los) * (U.K - 1) + 1);   % propagation segment index

   d = norm([PosBS, U.Hbs] - [PosUE, 0], 2);

   snr = 10 ^ ((U.Alpha(k) * log10(d) + U.Beta(k)) / 10) / U.Noise;

   F0 = fun0(snr);

   

   try

       % [Fmin3, Xhat3] = finduavpos3d(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       % Fmin3 = min(Fmin3, F0);

       Fmin3 = 0;

       

       [~, Xhat2] = finduavpos(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       los = IsLosK(PosUE, [Xhat2, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       Fmin2 = getcostf2DK_ergodic([Xhat2, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);

       % Fmin2 = min(Fmin2, F0);

       

       [~, Xhat1] = finduavpos1d(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       los = IsLosK(PosUE, [Xhat1, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       Fmin1 = getcostf2DK_ergodic([Xhat1, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);

       % Fmin1 = min(Fmin1, F0);

       

       % [Fmin_exhst, Xhat_exhst] = finduavpos2d_exhst(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       Fmin_exhst = Fmin3;

       

       [~, XhatStat] = finduavposStat(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap, losStat);

       los = IsLosK(PosUE, [XhatStat, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       FminStat = getcostf2DK_ergodic([XhatStat, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);

       % FminStat = min(FminStat, F0);

   catch

       Fmin1 = 0;

       Fmin2 = 0;

       Fmin3 = 0;

       Fmin_exhst = 0;

       FminStat = 0;

       failIds(i) = 1;

   end

 

   Rates0(i, :) = - [F0, FminStat, Fmin1, Fmin2, Fmin3, Fmin_exhst];

end

toc

%% Plot results

my_line_styles = {'-', '--', '-.', ':'}.';

Alg_scheme_name = {

   'Direct BS-User linkxx'

   'Probabilistic Alg'

   'Simple Search'

   'Proposed'

   'Proposed (3D)'

   'Exhaustive'

};

schemes_to_show = [1 2 3 4 6];

N_scheme_to_show = length(schemes_to_show);

validUserId = failIds < 1;

Rates = Rates0(validUserId, :);

Nue = size(Rates, 1);

maxdata = max(Rates(:));

Npt = 40;

XI = sort([0.1 0.17 0.3 0.5 (0:1/(Npt - 1 - 4):1) * maxdata], 'ascend');

X_data = zeros(Npt, N_scheme_to_show);

F_data = zeros(Npt, N_scheme_to_show);

for i = 1:N_scheme_to_show

   n = schemes_to_show(i);

   

   r_vec = Rates(:, n);

   [F1,X1] = ksdensity(r_vec, XI, 'function', 'cdf');

   

   X_data(:, i) = X1(:);

   F_data(:, i) = F1;

   

end

figure(1),

h = plot(X_data, F_data,'linewidth', 2);

set(gca, 'FontSize', 14);

legend(Alg_scheme_name{schemes_to_show}, 'location', 'southeast');

xlim([0 ceil(max(Rates(:)))]);

set(gca, 'YTick', 0:0.2:1);

xlabel('bps/Hz');

ylabel('CDF');

tune_figure,

set(h(1), 'linewidth', 2);

set(h(1), 'Marker', '*', 'Markersize', 6);

set(h(1), 'LineStyle', ':');

set(h(2), 'LineStyle', '-.');

set(h(3), 'LineStyle', ':');

set(h(4), 'LineStyle', '-');

set(h(4), 'LineWidth', 3);

set(h(5), 'linestyle', '--');

set(h(5), 'LineWidth', 3);

% ----

schemes_to_show = [1 2 3 4];

figure(2),

rateNoUav = Rates(:, 1);

[~, sortedIndex] = sort(rateNoUav, 'ascend');

low20percentileIndex = sortedIndex(1:round(Nue * 0.2));

high20percentileIndex = sortedIndex(round(Nue * 0.8): end);

RateLow = mean(Rates(low20percentileIndex, schemes_to_show), 1);

RateMean = mean(Rates(:, schemes_to_show), 1);

RateHigh = mean(Rates(high20percentileIndex, schemes_to_show), 1);

h = bar([RateLow

        RateMean

        RateHigh]);

set(gca, 'FontSize', 14);

set(h, 'linewidth', 2);

ylim([0, 10]);

legend(Alg_scheme_name{schemes_to_show}, 'location', 'northwest');

set(gca, 'XTickLabel', {'20th percentile', 'Mean', 'Top 20th percentile'});

set(gca, 'YTick', 0:2:10);

ylabel('Average end-to-end throughput [bps/Hz]');

% label the bars

Xdata = [RateLow

        RateMean

        RateHigh];

bartext = [];

for i = 1:size(Xdata, 1)

   for j = 1:size(Xdata, 2)

       bartext(i, j) = text(i + (j - 2.5) * 0.18, Xdata(i, j) + 0.05, ...

           sprintf('%1.2f', Xdata(i, j)), 'fontsize', 12);

   end

end

% Use the handles TH to modify some properties

set(bartext,'Horizontalalignment','center',...

'verticalalignment','bottom') ;

tune_figure,

[im_hatch,colorlist] = applyhatch_pluscolor(gcf,'\-x./+',0,0,[],150,2,2);

⛄ 运行结果

image.gif编辑

image.gif编辑

image.gif编辑

⛄ 参考文献

[1] Chen J ,  Gesbert D . Efficient Local Map Search Algorithms for the Placement of Flying Relays[J].  2018.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

相关文章
|
18天前
|
存储 机器学习/深度学习 编解码
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
本文提出统一相位正交啁啾分复用(UP-OCDM)方案,利用循环矩阵特性设计两种低复杂度均衡算法:基于带状近似的LDL^H分解和基于BEM的迭代LSQR,将复杂度由$O(N^3)$降至$O(NQ^2)$或$O(iNM\log N)$,在双选择性信道下显著提升高频谱效率与抗多普勒性能。
77 0
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
|
25天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
142 3
|
19天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
19天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
25天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
25天前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
|
25天前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
|
25天前
|
机器学习/深度学习 边缘计算 算法
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
135 0
|
25天前
|
机器学习/深度学习 分布式计算 算法
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
114 0
|
25天前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)

热门文章

最新文章