【无人机】基于Matlab实现高效局部地图搜索算法附论文

简介: 【无人机】基于Matlab实现高效局部地图搜索算法附论文

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

This paper studies the optimal unmanned aerial vehicle (UAV) placement problem for wireless networking. The UAV operates as a flying wireless relay to provide coverage extension for a base station (BS) and deliver capacity boost to a user shadowed by obstacles. While existing methods rely on statistical models for potential blockage of a direct propagation link, we propose an approach capable of leveraging local terrain information to offer performance guarantees. The proposed method allows to strike the best trade-off between minimizing propagation distances to ground terminals and discovering good propagation conditions. The algorithm only requires several propagation parameters, but it is capable to avoid deep propagation shadowing and is proven to find the globally optimal UAV position. Only a local exploration over the target area is required, and the maximum length of search trajectory is linear to the geographical scale. Hence, it lends itself to online search. Significant throughput gains are found when compared to other positioning approaches based on statistical propagation models.

具体模型见https://xueshu.baidu.com/usercenter/paper/show?paperid=14170ca0ug5a0ju0nt6q0ek0vx244295&site=xueshu_se

⛄ 部分代码

% Massive simulation

close all

clear

addpath(genpath('lib')),

Nue = 10000;    % <- reduce this number to shorter simulation time (coarser results)

DATA = load('citymap/urbanMapSingleUserK2.mat');

U = DATA.U; PosBS = DATA.PosBS;

DATA = load('citymap/losStatistics.mat');

losStat.Plos = DATA.Plos;

losStat.ElvAngles = DATA.ElvAngles;

clear DATA

load('citymap/topologyK2.mat');

U.K = 2;

if U.K == 2

   U.Alpha = [-21.4, -30.3];

   U.Beta =[-36.92, -38.42];

elseif U.K == 3

   U.Alpha = [-22, -28, -36];

   U.Beta =[-28, -24, -22];

else

   error('K should be 2 or 3.');

end

U.A0 = -20.8; U.B0 = -38.5;

U.A1 = U.Alpha(1); U.B1 = U.Beta(1);

U.A2 = U.Alpha(2); U.B2 = U.Beta(2);

Noise_dBm = -80;

Power_BS_dBm = 33;

Power_UAV_dBm = 33;

U.Noise = 10^(Noise_dBm/10) / 1000; % Watt in linear scale

U.Pb = 10^(Power_BS_dBm/10) / 1000;

U.Pd = 10^(Power_UAV_dBm/10) / 1000;

U.Hbs = 45;     % meter, BS height

U.Hmin = 45;    % meter, minimum UAV operation height

U.Hdrone = 50;  % meter, UAV search height

stepSizeMeter = 5;  % UAV search step size

fun = @(x,y) max(-log2(1 + U.Pd * real(x)), -log2(1 + U.Pb * real(y)));

fun0 = @(x) -log2(1 + U.Pb * x);

% Ergodic capacity

SNRs_dB = -10:2:20; Ks_dB = [9, -Inf];

Rerg = capacity_ergodic(Ks_dB, SNRs_dB);

fun1 = @(x,y) max(- max(0, ppval(spline(SNRs_dB, Rerg(1, :)), 10 * log10(U.Pd * real(x)))), ...

                 - log2(1 + U.Pb * real(y))); % UAV-UE_LOS(K-factor = 9dB,

             

fun2 = @(x,y) max(- max(0, ppval(spline(SNRs_dB, Rerg(2, :)), 10 * log10(U.Pd * real(x)))), ...

                 - log2(1 + U.Pb * real(y))); % UAV-UE_NLOS, Rayleigh fading

%%

N_scheme = 6;

tic

Nue = min(size(Topology, 1), Nue);

Rates0 = zeros(Nue, N_scheme);

strongUserIds = zeros(Nue, 1);

failIds = zeros(Nue, 1);

parfor i = 1:Nue

   

   PosUE = Topology{i}.PosUE;

   Blds = Topology{i}.Blds;

   BldTypes = Topology{i}.BldTypes;

   BldLines = Topology{i}.BldLines;

   BldHeight = Topology{i}.BldHeight;

   Nbld = size(Blds, 1);

   

   los = IsLosK(PosUE, [PosBS, U.Hbs], BldLines, BldHeight, U.Hdrone, BldTypes);

   if los == 1

       strongUserIds(i) = 1;

       % continue    % We are only interested in the case where the direct BS-user link is blocked

   end

   

   urbanMap = struct();

   urbanMap.BldLines = BldLines;

   urbanMap.BldHeight = BldHeight;

   urbanMap.BldTypes = BldTypes;

   

   % Direct BS-user link

   k = round((1 - los) * (U.K - 1) + 1);   % propagation segment index

   d = norm([PosBS, U.Hbs] - [PosUE, 0], 2);

   snr = 10 ^ ((U.Alpha(k) * log10(d) + U.Beta(k)) / 10) / U.Noise;

   F0 = fun0(snr);

   

   try

       % [Fmin3, Xhat3] = finduavpos3d(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       % Fmin3 = min(Fmin3, F0);

       Fmin3 = 0;

       

       [~, Xhat2] = finduavpos(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       los = IsLosK(PosUE, [Xhat2, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       Fmin2 = getcostf2DK_ergodic([Xhat2, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);

       % Fmin2 = min(Fmin2, F0);

       

       [~, Xhat1] = finduavpos1d(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       los = IsLosK(PosUE, [Xhat1, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       Fmin1 = getcostf2DK_ergodic([Xhat1, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);

       % Fmin1 = min(Fmin1, F0);

       

       % [Fmin_exhst, Xhat_exhst] = finduavpos2d_exhst(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       Fmin_exhst = Fmin3;

       

       [~, XhatStat] = finduavposStat(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap, losStat);

       los = IsLosK(PosUE, [XhatStat, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       FminStat = getcostf2DK_ergodic([XhatStat, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);

       % FminStat = min(FminStat, F0);

   catch

       Fmin1 = 0;

       Fmin2 = 0;

       Fmin3 = 0;

       Fmin_exhst = 0;

       FminStat = 0;

       failIds(i) = 1;

   end

 

   Rates0(i, :) = - [F0, FminStat, Fmin1, Fmin2, Fmin3, Fmin_exhst];

end

toc

%% Plot results

my_line_styles = {'-', '--', '-.', ':'}.';

Alg_scheme_name = {

   'Direct BS-User linkxx'

   'Probabilistic Alg'

   'Simple Search'

   'Proposed'

   'Proposed (3D)'

   'Exhaustive'

};

schemes_to_show = [1 2 3 4 6];

N_scheme_to_show = length(schemes_to_show);

validUserId = failIds < 1;

Rates = Rates0(validUserId, :);

Nue = size(Rates, 1);

maxdata = max(Rates(:));

Npt = 40;

XI = sort([0.1 0.17 0.3 0.5 (0:1/(Npt - 1 - 4):1) * maxdata], 'ascend');

X_data = zeros(Npt, N_scheme_to_show);

F_data = zeros(Npt, N_scheme_to_show);

for i = 1:N_scheme_to_show

   n = schemes_to_show(i);

   

   r_vec = Rates(:, n);

   [F1,X1] = ksdensity(r_vec, XI, 'function', 'cdf');

   

   X_data(:, i) = X1(:);

   F_data(:, i) = F1;

   

end

figure(1),

h = plot(X_data, F_data,'linewidth', 2);

set(gca, 'FontSize', 14);

legend(Alg_scheme_name{schemes_to_show}, 'location', 'southeast');

xlim([0 ceil(max(Rates(:)))]);

set(gca, 'YTick', 0:0.2:1);

xlabel('bps/Hz');

ylabel('CDF');

tune_figure,

set(h(1), 'linewidth', 2);

set(h(1), 'Marker', '*', 'Markersize', 6);

set(h(1), 'LineStyle', ':');

set(h(2), 'LineStyle', '-.');

set(h(3), 'LineStyle', ':');

set(h(4), 'LineStyle', '-');

set(h(4), 'LineWidth', 3);

set(h(5), 'linestyle', '--');

set(h(5), 'LineWidth', 3);

% ----

schemes_to_show = [1 2 3 4];

figure(2),

rateNoUav = Rates(:, 1);

[~, sortedIndex] = sort(rateNoUav, 'ascend');

low20percentileIndex = sortedIndex(1:round(Nue * 0.2));

high20percentileIndex = sortedIndex(round(Nue * 0.8): end);

RateLow = mean(Rates(low20percentileIndex, schemes_to_show), 1);

RateMean = mean(Rates(:, schemes_to_show), 1);

RateHigh = mean(Rates(high20percentileIndex, schemes_to_show), 1);

h = bar([RateLow

        RateMean

        RateHigh]);

set(gca, 'FontSize', 14);

set(h, 'linewidth', 2);

ylim([0, 10]);

legend(Alg_scheme_name{schemes_to_show}, 'location', 'northwest');

set(gca, 'XTickLabel', {'20th percentile', 'Mean', 'Top 20th percentile'});

set(gca, 'YTick', 0:2:10);

ylabel('Average end-to-end throughput [bps/Hz]');

% label the bars

Xdata = [RateLow

        RateMean

        RateHigh];

bartext = [];

for i = 1:size(Xdata, 1)

   for j = 1:size(Xdata, 2)

       bartext(i, j) = text(i + (j - 2.5) * 0.18, Xdata(i, j) + 0.05, ...

           sprintf('%1.2f', Xdata(i, j)), 'fontsize', 12);

   end

end

% Use the handles TH to modify some properties

set(bartext,'Horizontalalignment','center',...

'verticalalignment','bottom') ;

tune_figure,

[im_hatch,colorlist] = applyhatch_pluscolor(gcf,'\-x./+',0,0,[],150,2,2);

⛄ 运行结果

image.gif编辑

image.gif编辑

image.gif编辑

⛄ 参考文献

[1] Chen J ,  Gesbert D . Efficient Local Map Search Algorithms for the Placement of Flying Relays[J].  2018.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

相关文章
|
7天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
7天前
|
机器学习/深度学习 运维 算法
【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)
【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)
|
7天前
|
存储 机器学习/深度学习 算法
基于A星算法的无人机三维路径规划算法研究(Mattlab代码实现)
基于A星算法的无人机三维路径规划算法研究(Mattlab代码实现)
|
7天前
|
机器学习/深度学习 算法 Java
基于灰狼优化算法(GWO)解决柔性作业车间调度问题(Matlab代码实现)
基于灰狼优化算法(GWO)解决柔性作业车间调度问题(Matlab代码实现)
|
7天前
|
算法 安全 定位技术
基于改进拥挤距离的多模态多目标优化差分进化(MMODE-ICD)求解无人机三维路径规划研究(Matlab代码实现)
基于改进拥挤距离的多模态多目标优化差分进化(MMODE-ICD)求解无人机三维路径规划研究(Matlab代码实现)
|
7天前
|
算法 机器人 Serverless
【机器人路径规划】基于6种算法(黑翅鸢优化算法BKA、SSA、MSA、RTH、TROA、COA)求解机器人路径规划研究(Matlab代码实现)
【机器人路径规划】基于6种算法(黑翅鸢优化算法BKA、SSA、MSA、RTH、TROA、COA)求解机器人路径规划研究(Matlab代码实现)
|
7天前
|
传感器 资源调度 算法
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
|
7天前
|
供应链 算法 Java
【柔性作业车间调度问题FJSP】基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题FJSP研究(Matlab代码实现)
【柔性作业车间调度问题FJSP】基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题FJSP研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 算法 调度
基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)
基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)

热门文章

最新文章