【OpenVI-图像超分实战篇】别用GAN做超分了,快来试试基于扩散模型的图像超分吧!
近10年来,深度学习技术得到了长足进步,在图像增强领域取得了显著的成果,尤其是以GAN为代表的生成式模型在图像复原、老片修复,图像超分辨率等方面大放异彩。图像超分辨率是视频增强方面,用于提升画质的典型应用。生成对抗网络GAN使得在图像分辨率增加的同时,保持细节特征,补充生成真实的纹理,其中应用广泛的工作是Real-ESRGAN。
扩散模型DiffusionModel在图像超分辨率这方面的新的应用,展现出其超过GAN的生成多样性和真实性。看完后,你会发现,还在用GAN做图像超分辨率吗?已经OUT了,快来试试DiffusionModel吧!
【OpenVI-图搜系列—多模态检索实战篇】基于表征大模型的多模态检索系统
信息检索产品几乎是人们生活中必不可少的工具,经常用的有文本搜文本、图片搜图片等应用。以上任务均为单模态的检索。而多模态检索则处理涵盖原有的单模态检索任务以外,也包含跨模态检索任务,即文搜图、文搜视频等任务。要实现这一任务,则需要底层的表征模型具备图文对齐的能力,换句话说,要实现多模态检索,表征模型应实现将不同模态信息的特征映射到同一个域内,从而实现不同模态之间的相互检索。CLIP的多模态技术出现以来,给多模态检索领域带来了新的技术变革,使得实现基于通用表征大模型的大规模多模态检索系统成为可能。
AI Ping:精准可靠的大模型服务性能评测平台
AI Ping是清华系团队推出的“大模型服务评测平台”,被誉为“AI界的大众点评”。汇聚230+模型服务,7×24小时监测性能数据,以吞吐量、延迟等硬指标助力开发者科学选型。界面简洁,数据可视化强,支持多模型对比,横向对标国内外主流平台,为AI应用落地提供权威参考。