展望2024: 中国AI算力能否引爆高性能计算和大模型训练的新革命?
2023年是人工智能发展的重要转折年,企业正在从业务数字化迈向业务智能化。大模型的突破和生成式人工智能的兴起为企业实现产品和流程的革新提供了先进工具,引领产业迈入智能创新的新阶段。在这个新时代,企业不再仅关注如何增强智能化能力,而更加注重如何利用人工智能实现产品和流程的革新。
如何在通义灵码里使用 MCP 能力
通义灵码支持MCP工具使用,通过模型自主规划实现工具调用,深度集成魔搭MCP广场,涵盖2400+热门服务。提供STDIO和SSE两种通信模式,适用于不同场景需求。用户可通过智能体模式调用MCP工具,完成如网页内容抓取、天气查询等任务。文档详细介绍了服务配置、使用流程及常见问题解决方法,助力开发者高效拓展AI编码能力。
Chat、Agent和Workflow的思考
Chat、Agent 和 Workflow 各具特色,长期共存,满足不同层次的LLM应用需求。Chat 实现高效人机对话,适用于即时交互;Agent 强调自主执行任务,适合复杂推理与工具调用;Workflow 侧重流程标准化,适用于结构化场景。测试设计应根据不同类型定制方案,聚焦业务价值,而非泛化指标。可通过 A/B 测试、用户反馈和错误分析持续优化模型表现。
【自定义插件系列】0基础在阿里云百炼上玩转大模型自定义插件
本文介绍了如何在阿里云百炼平台上创建大模型自定义插件,以增强AI模型功能或适配特定需求。通过编程接口(API)或框架设计外部扩展模块,开发者可在不修改底层参数的情况下扩展模型能力。文章以万相文生图V2版模型为例,详细说明了创建自定义插件的五个步骤:新建插件、创建工具、测试工具、复制第二个工具及最终测试发布。同时,提供了官方文档参考链接和具体参数设置指导,帮助用户轻松实现插件开发与应用,推动AI技术在各行业的广泛应用。
颠覆开发效率!国内首个微服务编排框架Juggle开源啦!
Juggle是国内首个开源的微服务编排框架,专注于解决企业微服务进程中接口重复开发、系统对接复杂等问题。它提供零代码、低代码和AI增强功能,通过可视化拖拽快速组装简单API为复杂接口,支持多协议、多语言脚本和流程多版本管理。相比国外框架如Conductor,Juggle更贴合国内需求,具备高效开发、企业级可靠性及信创适配等优势,助力企业实现敏捷创新与数字化转型。