5分钟从零构建第一个 Apache Flink 应用
作者:伍翀
在本文中,我们将从零开始,教您如何构建第一个Apache Flink (以下简称Flink)应用程序。
开发环境准备
Flink 可以运行在 Linux, Max OS X, 或者是 Windows 上。
阿里巴巴为什么选择Apache Flink?
本文作者:王峰(花名:莫问)
导读:伴随着海量增长的数据,数字化时代的未来感扑面而至。不论是结绳记事的小数据时代,还是我们正在经历的大数据时代,计算的边界正在被无限拓宽,而数据的价值再也难以被计算。时下,谈及大数据,不得不提到热门的下一代大数据计算引擎Apache Flink(以下简称Flink)。本文将结合Flink的前世
Flink Batch SQL 1.10 实践
1.10可以说是第一个成熟的生产可用的Flink Batch SQL版本,它一扫之前Dataset的羸弱,从功能和性能上都有大幅改进,以下我从架构、外部系统集成、实践三个方面进行阐述。
Apache Flink源码解析之stream-sink
上一篇我们谈论了Flink stream source,它作为流的数据入口是整个DAG(有向无环图)拓扑的起点。那么与此对应的,流的数据出口就是跟source对应的Sink。这是我们本篇解读的内容。
SinkFunction
跟SourceFunction对应,Flink针对Sink的根接口被称为SinkFunction。
如何在 Flink 1.9 中使用 Hive?
Apache Flink 从 1.9.0 版本开始增加了与 Hive 集成的功能,用户可以通过 Flink 来访问 Hive 的元数据,以及读写 Hive 中的表。本文将主要从项目的设计架构、最新进展、使用说明等方面来介绍这一功能。