人工智能,应该如何测试?(五)ASR 效果测试介绍
ASR是自动语音识别技术,将语音转化为文本,涉及多学科知识。数据收集是关键,包括特定人/非特定人、词汇量大小、发音方式、方言和情感等多种类别,高质量数据成本高。ASR流程包括数据收集、标注、输入算法得到文本输出并评估。常用评估指标有字错率(WER)、字正确率及插入/删除/替换率。数据标注需严格遵循规范,工作量大,而Levenshtein库可用于自动化效果评测。在AI领域,大部分时间投入在数据处理上。
智能语音识别技术:原理、应用与挑战####
本文深入浅出地探讨了智能语音识别技术的基本原理,从声学模型到语言模型的构建过程,揭示了其背后的复杂算法。同时,文章详细阐述了该技术在智能家居、客户服务、无障碍技术等领域的广泛应用,并指出了当前面临的主要挑战,包括噪声干扰、方言差异及数据隐私等问题,为读者提供了对这一前沿技术领域的全面了解。
####