AI芯片

首页 标签 AI芯片
# AI芯片 #
关注
1312内容
多GPU训练大型模型:资源分配与优化技巧 | 英伟达将推出面向中国的改良芯片HGX H20、L20 PCIe、L2 PCIe
在人工智能领域,大型模型因其强大的预测能力和泛化性能而备受瞩目。然而,随着模型规模的不断扩大,计算资源和训练时间成为制约其发展的重大挑战。特别是在英伟达禁令之后,中国AI计算行业面临前所未有的困境。为了解决这个问题,英伟达将针对中国市场推出新的AI芯片,以应对美国出口限制。本文将探讨如何在多个GPU上训练大型模型,并分析英伟达禁令对中国AI计算行业的影响。
NPU推理&微调大模型实战
本文为魔搭社区轻量级训练推理工具SWIFT微调实战教程系列
|
8月前
|
企业内训|基于华为昇腾910B算力卡的大模型部署和调优-上海某央企智算中心
近日上海,TsingtaoAI为某央企智算中心交付华为昇腾910B算力卡的大模型部署和调优课程。课程深入讲解如何在昇腾NPU上高效地训练、调优和部署PyTorch与Transformer模型,并结合实际应用场景,探索如何优化和迁移模型至昇腾NPU平台。课程涵盖从模型预训练、微调、推理与评估,到性能对比、算子适配、模型调优等一系列关键技术,帮助学员深入理解昇腾NPU的优势及其与主流深度学习框架(如PyTorch、Deepspeed、MindSpore)的结合应用。
|
10月前
|
【AI系统】超异构计算
本文探讨了计算机架构发展的黄金十年,重点介绍了异构计算和超异构计算的概念及其在AI芯片发展中的应用。文章首先回顾了AI芯片发展的三个阶段,随后详细阐述了异构计算的优势和应用场景,如性能飞跃、灵活定制、降低成本和降低功耗。接着,文章分析了超异构计算的出现背景、基本特征及其面临的挑战,包括软件层的复杂性和硬件定义软件与软件定义硬件之间的权衡。最后,展望了超异构计算的未来,强调了跨平台统一计算架构的重要性,以及构建开放生态系统的必要性。
|
9月前
|
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
免费试用