DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略
                深度学习(Deep Learning, DL)或阶层学习(hierarchical learning)是机器学习的技术和研究领域之一,通过建立具有阶层结构的人工神经网络(Artifitial Neural Networks, ANNs),在计算系统中实现人工智能  。由于阶层ANN能够对输入信息进行逐层提取和筛选,因此深度学习具有表征学习(representation learning)能力 ,可以实现端到端的监督学习和非监督学习 。此外,深度学习也可参与构建强化学习(reinforcement learning)系统,形成深度强化学习  。
              
             
            
              
              从ISSCC 2017看人工智能芯片的四大趋势
              一年一度的ISSCC又在美国旧金山万豪酒店隆重举行。除了传统的电路设计外,人工智能芯片更是今年的关注焦点。作为人工智能芯片的专业先锋,矽说(携手机器之心/半导体行业观察)也亲临现场,发回独家报道。
              
             
            
              
              小白也能搭建深度模型,百度EasyDL的背后你知多少
              部署深度学习服务非常困难,因此简单易用的图形化系统就显得极为重要。本文介绍了百度的图形化深度学习系统 EasyDL,用户可以不需要机器学习背景知识而搭建优秀的深度学习服务。本文重点讨论了 EasyDL 系统的技术模块与优势,它大量采用了迁移学习与自动模型搜索,并针对不同的定制化任务学习不同的深度模型。
              
             
            
              
              Colab提供了免费TPU,机器之心帮你试了试
              最近机器之心发现谷歌的 Colab 已经支持使用免费的 TPU,这是继免费 GPU 之后又一重要的计算资源。我们发现目前很少有博客或 Reddit 论坛讨论这一点,而且谷歌也没有通过博客或其它方式做宣传。因此我们尝试使用该 TPU 训练简单的卷积神经网络,并对比它的运行速度。
              
             
            
            
              
              新AI硬件加速器的爆炸式增长推动AI发展
              专业的硬件平台是人工智能、机器学习和深度学习的未来,也是我们所生活的云到边缘世界的每一项任务的未来。人工智能的快速发展正在催生一种新型的机器学习和深度学习的硬件加速器。
              
             
            
              
              【NLP】(task3上)预训练语言模型——BERT
              将Transformer模型结构发扬光大的一个经典模型:BERT。
BERT在2018年出现。2018 年是机器学习模型处理文本(或者更准确地说,自然语言处理或 NLP)的转折点。我们对这些方面的理解正在迅速发展:如何最好地表示单词和句子,从而最好地捕捉基本语义和关系?此外,NLP 社区已经发布了非常强大的组件,你可以免费下载,并在自己的模型和 pipeline 中使用。