InfluxDB最佳实践:数据模型设计与查询优化
【4月更文挑战第30天】本文探讨了InfluxDB的最佳实践,重点在于数据模型设计和查询优化。合理选择字段类型,根据业务逻辑划分Measurement,利用Tags进行索引优化,以及适时数据归档和清理,能有效提升性能。查询优化包括使用索引、精简查询语句、应用聚合函数及限制返回结果。分布式查询和分片适用于大规模数据集,以实现并行查询和负载均衡。这些策略旨在帮助用户优化InfluxDB的性能,进行高效时序数据分析。
Kubernetes监控InfluxDB介绍
什么是InfluxDB?
InfluxDB介绍
InfluxDB是一款用Go语言编写的开源分布式时序、事件和指标数据库,无需外部依赖。
该数据库现在主要用于存储涉及大量的时间戳数据,如DevOps监控数据,APP metrics, loT传感器数据和实时分析数据。
Prometheus VS InfluxDB
前言
除了传统的监控系统如 Nagios,Zabbix,Sensu 以外,基于时间序列数据库的监控系统随着微服务的兴起越来越受欢迎,比如 Prometheus,比如 InfluxDB。gtt 也尝试了一下这两个系统,希望能找到两者的差别,为以后选型提供一些帮助。
一站式结构化数据存储Tablestore实战手册
表格存储 Tablestore 支撑了阿里云百亿订单、钉钉消息以及物联网数据存储,提供数据存储、查询、检索和分析一体化能力。十分钟掌握阿里自研零运维分布式结构化数据存储 Tablestore,轻松构建百亿量级数据存储架构。
InfluxDB的连续查询与数据聚合技术详解
【4月更文挑战第30天】InfluxDB的连续查询(CQ)功能用于自动定时聚合时间序列数据,适用于数据降采样、实时分析和告警通知等场景。CQ使用InfluxQL编写,例如,每1小时对`cpu_usage`测量值计算主机的平均CPU使用率并存入`cpu_usage_hourly`。InfluxDB提供多种聚合函数如`MEAN()`, `MAX()`, 支持滑动窗口聚合等复杂操作,助力时间序列数据分析和趋势预测。通过CQ,用户能高效管理和利用时间序列数据信息。
查询提速11倍、资源节省70%,阿里云数据库内核版 Apache Doris 在网易日志和时序场景的实践
网易的灵犀办公和云信利用 Apache Doris 改进了大规模日志和时序数据处理,取代了 Elasticsearch 和 InfluxDB。Doris 实现了更低的服务器资源消耗和更高的查询性能,相比 Elasticsearch,查询速度提升至少 11 倍,存储资源节省达 70%。Doris 的列式存储、高压缩比和倒排索引等功能,优化了日志和时序数据的存储与分析,降低了存储成本并提高了查询效率。在灵犀办公和云信的实际应用中,Doris 显示出显著的性能优势,成功应对了数据增长带来的挑战。