算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10834内容
TensorFlow在iOS和Mac上的使用
一、环境 1、首先你得安装好Xcode 8,确定开发者目录指向你安装Xcode的位置并且已经被激活。(如果你在安装Xcode之前已经安装了Homebrew,这可能会指向错误的地址,导致TensorFlow安装失败): sudo xcode-select -s /Applications/Xcode.
使用Opencv构建一个简单的图像相似检测器(MSE、SSIM)
本文使用opencv。numpy等简单的工具库,根据mse及ssim两种算法来评估两张图像的相似度,便于理解与实践。
超干货|使用Keras和CNN构建分类器(内含代码和讲解)
为了让文章不那么枯燥,我构建了一个精灵图鉴数据集(Pokedex)这都是一些受欢迎的精灵图。我们在已经准备好的图像数据集上,使用Keras库训练一个卷积神经网络(CNN)。
深度学习小技巧(一):如何保存和恢复TensorFlow训练的模型
深度学习小技巧掌握:作者通过一个简单的例子详细介绍了如何将训练过程中的深度学习模型保存,然后如何加载。有了这个小技巧,再也不用担心在训练模型中出错了。
利用Python实现卷积神经网络的可视化(附Python代码)
本文简单说明了CNN模型可视化的重要性,以及介绍了一些可视化CNN网络模型的方法,希望对读者有所帮助,使其能够在后续深度学习应用中构建更好的模型。
浅析GPU通信技术(上)-GPUDirect P2P
1. 背景 GPU在高性能计算和深度学习加速中扮演着非常重要的角色, GPU的强大的并行计算能力,大大提升了运算性能。随着运算数据量的不断攀升,GPU间需要大量的交换数据,GPU通信性能成为了非常重要的指标。
| |
来自: 云原生
Kubeflow实战系列: 利用TFJob运行分布式TensorFlow
TensorFlow作为现在最为流行的深度学习代码库,在数据科学家中间非常流行,特别是可以明显加速训练效率的分布式训练更是杀手级的特性。但是如何真正部署和运行大规模的分布式模型训练,却成了新的挑战。
免费试用