中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100类常见中药材,适用于YOLO系列及主流深度学习模型的图像分类与目标检测任务。数据已划分为训练集(8000张)与验证集(1200张),采用标准文件夹结构和简体中文命名,适配PyTorch、TensorFlow等框架,可用于中药识别系统开发、医学辅助诊断、移动端图像识别App研发及AI科研训练,具备较强的实用性与拓展性。
Flow Matching生成模型:从理论基础到Pytorch代码实现
本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。
Arctic长序列训练技术:百万级Token序列的可扩展高效训练方法
Arctic长序列训练(Arctic Long Sequence Training, ALST)技术能够在4个H100节点上对Meta的Llama-8B模型进行高达1500万token序列的训练,使得长序列训练在标准GPU集群甚至单个GPU上都能实现快速、高效且易于部署的执行。
MindIE-LLM ATB模型推理全流程解析
最近,有很多小伙伴问我,如果他们想自己基于MindIE镜像中的文件适配新模型,可以怎么做?
为了实现这个目标,首先需要了解MindIE-LLM模型在推理过程中的代码调用流程,然后根据新模型的算法进行适配。
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
手写中文识别模型复现踩坑日记
最近复现了手写中文识别项目 jjcheer/ocrcn_tf2,使用 TensorFlow 2。过程中踩了不少坑:从 Unicode 解码错误、tfrecord 与 label 不对齐,到最后换 Python 3.8 才解决的环境问题。总结教训:用虚拟环境、按项目配版本、写 requirements.txt、多看 issues。复现不易,且行且珍惜。
nanoVLM: 简洁、轻量的纯 PyTorch 视觉-语言模型训练代码库
nanoVLM 是一个基于 PyTorch 的轻量级工具包,专为训练视觉语言模型(VLM)设计。它结构简洁、易于理解,适合初学者快速上手。支持在免费 Colab Notebook 上训练,结合视觉 Transformer 与语言模型,实现图像理解和文本生成。项目受 nanoGPT 启发,注重代码可读性与实现效率。