机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
69072内容
深度学习训练,选择P100就对了
本文使用NVCaffe、MXNet、TensorFlow三个主流开源深度学习框架对P100和P40做了图像分类场景的卷积神经网络模型训练的性能对比,并给出了详细分析,结论是P100比P40更适合深度学习训练场景。
对比解读五种主流大数据架构的数据分析能力
数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、对业务发展有着举足轻重的作用。
深度学习要多深,才能读懂人话?|阿里小蜜前沿探索
本篇文章全面阐述了“机器阅读理解综述及在电商领域的探索”主题,总字数近五千字,预计需要10分钟左右的阅读时间。推荐对深度学习、大数据、自然语言处理感兴趣的童鞋收藏。
蚂蚁金服终端实验室演进之路
本文将从支付宝业务特性出发,深度解析无线实验集群在支付宝的演进与发展,并探讨 IoT 与人机如何交互并提供真正落地的时间方案。
纯干货 | 机器学习中梯度下降法的分类及对比分析(附源码)
本文详细介绍了基于使用数据量的多少,时间复杂度以及算法准确率的不同类型的梯度下降法,并详细说明了3种梯度下降法的比较。
【云周刊】第128期:支撑千亿营收背后秘密——首届阿里巴巴研发效能嘉年华
如何保护企业代码资产,释放程序员“债务”压力?怎样向“老板拍脑袋提需求”和“PD歪歪”说NO?6月29日,首届阿里巴巴研发效能嘉年华来啦!语音识别真的比肩人类了?听听阿里iDST初敏怎么说...更多精彩技术资讯,尽在云周刊!
理解卷积神经网络的利器:9篇重要的深度学习论文(下)
为了更好地帮助你理解卷积神经网络,在这里,我总结了计算机视觉和卷积神经网络领域内许多新的重要进步及有关论文。
入行AI最需要的五大技能
作为一名软件工程师,我们应该活到老学到老,时刻与不断发展的框架、标准和范式保持同步。同时,还要能活学活用,在工作中使用最合适的工具,以提高工作效率。随着机器学习在越来越多的应用程序中寻得了一席之地,越来越多的程序员加入AI领域,那么,入行AI领域需要哪些技能呢?
零基础入门深度学习(1):感知器,激活函数
零基础入门深度学习(1) - 感知器零基础入门深度学习(2) - 线性单元和梯度下降零基础入门深度学习(3) - 神经网络和反向传播算法零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络。 零基础入门深度学习(6) - 长短时记忆网络(LSTM)。 无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作
免费试用