DistilQwen2.5发布:通义千问蒸馏小模型再升级
为解决大语言模型在资源有限环境下的高计算成本和复杂性问题,阿里云推出了基于 Qwen2.5 的轻量化模型系列 DistilQwen2.5。该模型通过双层蒸馏框架、数据优化策略及参数融合技术,在保留性能的同时显著降低计算资源消耗。本文提供了详细的使用教程和代码示例,方便用户在 PAI 平台上调用。
通义首个音频生成模型 ThinkSound 开源,你的专业音效师
通义实验室推出首个音频生成模型ThinkSound,突破传统视频到音频生成技术局限,首次将思维链(CoT)应用于音频生成领域,实现高保真、强同步的空间音频生成。基于自研AudioCoT数据集,结合多模态大语言模型与统一音频生成模型,支持交互式编辑,显著提升音画匹配度与时序一致性。代码已开源,助力游戏、VR、AR等场景创新应用。
深度学习中的图像风格迁移技术探析
图像风格迁移是近年来深度学习领域备受关注的研究方向之一。本文将从算法原理、实现步骤到应用案例,全面分析和探讨几种主流的图像风格迁移技术,为读者深入理解和应用这一技术提供详实的指南。
【7月更文挑战第2天】
通义OmniAudio大模型,让 AI 看懂 360° 视频,并“听”出对应的空间音频
OmniAudio 是一项突破性的空间音频生成技术,能够直接从 360° 视频生成 FOA(First-order Ambisonics)空间音频,为虚拟现实和沉浸式娱乐带来全新可能。通过自监督 coarse-to-fine 预训练和双分支视频表示微调,OmniAudio 在非空间音频质量和空间定位准确性上显著优于现有方法。项目包含超过 103,000 个视频片段的 Sphere360 数据集,支持高质量的模型训练与评估。代码、数据及论文均已开源,助力沉浸式体验技术发展。
Bridge to the digital world —— AR算法技术分享
Augmented Reality (AR) 近年来风头正劲,成为众多科技公司的宠儿。近期,苹果推出了AR Kit,更是将这一热点推上了风口。究竟什么是AR?它为何如此受重视?技术上它需要解决哪些核心问题?目前我们阿里AI LAB AR算法团队已有哪些算法落地,应用的业务场景有哪些?带着这些问题,小编今天带您一窥AR的风采,感受这一场数字风暴的先声。