基于大数据的旅游可视化及推荐系统
本项目围绕数字化旅游系统的开发与应用展开研究,结合SpringBoot、Layui、MySQL、Java等技术,构建基于协同过滤算法的智能推荐系统。内容涵盖项目背景、研究现状、开发工具及功能结构,旨在提升旅游体验与管理效率,推动旅游业数字化转型。
基于大数据的电影点评与推荐
本系统基于大数据与人工智能技术,构建电影点评与推荐平台,提供个性化电影推荐、用户点评及社交互动功能。通过分析用户行为与电影属性,优化推荐算法,提升用户体验与满意度,促进电影产业发展与市场活跃。
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
基于python大数据的招聘数据可视化及推荐系统
本研究聚焦于基于协同过滤的就业推荐系统设计与实现。随着就业压力增大和信息技术发展,传统求职方式面临挑战。通过分析用户行为与职位特征,协同过滤技术可实现个性化职位推荐,提升求职与招聘效率。研究涵盖系统架构、数据采集、算法实现及可视化展示,旨在优化就业匹配,促进人才与岗位精准对接,助力就业市场智能化发展。