使用云存储构建云上推理平台
本文介绍了大模型分布式推理的工作流、IO分析、存储需求及解决方案。通过分布式缓存和P2P能力,优化了大规模并发场景下的模型加载与分发效率,提升了推理性能。NAS文件存储和OSS加速器在高并发读取和小模型缓存中表现出色,支持秒级加载和高效数据处理。阿里云存储为开发者提供了稳定、高效的推理环境,助力AI应用快速落地。
构建AI数据管道:从数据到洞察的高效之旅最佳实践
本文探讨了大模型从数据处理、模型训练到推理的全流程解决方案,特别强调数据、算法和算力三大要素。在数据处理方面,介绍了多模态数据的高效清洗与存储优化;模型训练中,重点解决了大规模数据集和CheckPoint的高效管理;推理部分则通过P2P分布式加载等技术提升效率。案例展示了如何在云平台上实现高性能、低成本的数据处理与模型训练,确保业务场景下的最优表现。
MaxCompute年度发布
本次分享介绍了阿里云MaxCompute在过去一年中的企业级数仓新功能。MaxCompute自2009年诞生,现已服务阿里巴巴集团、蚂蚁集团及众多第三方客户,日处理千万级任务。新功能包括湖仓一体开放性、Data+AI结合、非结构化数据处理(如Object Table)、实时数据处理(如增量物化视图)、性能优化(如MCU2.0和智能调优)以及企业级安全合规能力(如同城容灾和数据脱敏)。这些改进提升了数据处理的效率、安全性和性价比。
深度解析CPFS 在 LLM 场景下的高性能存储技术
本文深入探讨了CPFS在大语言模型(LLM)训练中的端到端性能优化策略,涵盖计算端缓存加速、智能网卡加速、数据并行访问及数据流优化等方面。重点分析了大模型对存储系统的挑战,包括计算规模扩大、算力多样性及数据集增长带来的压力。通过分布式P2P读缓存、IO加速、高性能存算通路技术以及智能数据管理等手段,显著提升了存储系统的吞吐量和响应速度,有效提高了GPU利用率,降低了延迟,从而加速了大模型的训练进程。总结了CPFS在AI训练场景中的创新与优化实践,为未来大模型发展提供了有力支持。
PolarDB-PG AI最佳实践3 :PolarDB AI多模态相似性搜索最佳实践
本文介绍了如何利用PolarDB结合多模态大模型(如CLIP)实现数据库内的多模态数据分析和查询。通过POLAR_AI插件,可以直接在数据库中调用AI模型服务,无需移动数据或额外的工具,简化了多模态数据的处理流程。具体应用场景包括图像识别与分类、图像到文本检索和基于文本的图像检索。文章详细说明了技术实现、配置建议、实战步骤及多模态检索示例,展示了如何在PolarDB中创建模型、生成embedding并进行相似性检索
阿里云弹性计算稳定性最佳实践
本文介绍了ECS实例稳定性最佳实践的重要性及其具体实施方法。首先,阐述了ECS作为底层基础设施,其稳定性对业务连续性至关重要,并通过一系列工程化方法构建稳定的基础架构。其次,详细描述了用户如何通过合适规格选择、操作系统更新、事件响应机制等手段规避风险,提升业务稳定性。此外,还探讨了实例Panic风险消除、故障诊断及自动分析等技术细节,以及通过云助手插件实现自动化监控和故障处理的最佳实践。最后,分享了制造业客户的实际案例,展示了如何有效解决大规模Panic事件,确保业务的持续稳定运行。通过这些措施,用户可以充分利用ECS的稳定性优势,保障业务的高效与可靠。