智能语音交互

首页 标签 智能语音交互
# 智能语音交互 #
关注
2339内容
SpeechGPT 2.0:复旦大学开源端到端 AI 实时语音交互模型,实现 200ms 以内延迟的实时交互
SpeechGPT 2.0 是复旦大学 OpenMOSS 团队推出的端到端实时语音交互模型,具备拟人口语化表达、低延迟响应和多情感控制等功能。
GLM-Realtime:智谱推出多模态交互AI模型,融入清唱功能,支持视频和语音交互
GLM-Realtime 是智谱推出的端到端多模态模型,具备低延迟的视频理解与语音交互能力,支持清唱功能、2分钟内容记忆及灵活调用外部工具,适用于多种智能场景。
VITA-1.5: 迈向GPT-4o级实时视频-语音交互
近期,由南京大学和腾讯优图推出的VITA-1.5在魔搭开源。VITA-1.5支持视频,音频,文本输入,以及音频输出。
语音交互产品通过WebSocket协议对外提供实时语音流语音转写功能
阿里云智能语音交互产品通过WebSocket协议提供实时语音转写功能,支持长语音。音频流以Binary Frame上传,指令和事件为Text Frame。支持单声道、16 bit采样位数的PCM、WAV等格式,采样率8000Hz/16000Hz。可设置返回中间结果、添加标点、中文数字转阿拉伯数字,并支持多语言识别。服务端通过临时Token鉴权,提供外网和上海ECS内网访问URL。交互流程包括StartTranscription、StopTranscription指令及多种事件反馈。
|
8月前
|
昇腾AI行业案例(七):基于 Conformer 和 Transformer 模型的中文语音识别
欢迎学习《基于 Conformer 和 Transformer 模型的中文语音识别》实验。本案例旨在帮助你深入了解如何运用深度学习模型搭建一个高效精准的语音识别系统,将中文语音信号转换成文字,并利用开源数据集对模型效果加以验证。
|
8月前
|
《鸿蒙Next:让人工智能语音交互听懂每一种方言和口音》
鸿蒙Next系统通过丰富方言语音数据、优化语音识别模型、引入语音合成技术及用户反馈机制,大幅提升对不同方言和口音的识别能力。具体措施包括多渠道收集方言数据、建立动态数据库、采用深度学习算法、实现多任务学习与对抗训练、生成标准方言样本,并结合硬件如麦克风阵列技术优化语音输入质量。这些综合手段确保了语音交互的准确性和实时性,为用户提供更智能、便捷的服务。
|
9月前
|
自学记录HarmonyOS Next的HMS AI API 13:语音合成与语音识别
在完成图像处理项目后,我计划研究HarmonyOS Next API 13中的AI语音技术,包括HMS AI Text-to-Speech和Speech Recognizer。这些API提供了强大的语音合成与识别功能,支持多语言、自定义语速和音调。通过这些API,我将开发一个支持语音输入与输出的“语音助手”原型应用,实现从语音指令解析到语音响应的完整流程。此项目不仅提高了应用的交互性,也为开发者提供了广阔的创新空间。未来,语音技术将在无障碍应用和智慧城市等领域展现巨大潜力。如果你也对语音技术感兴趣,不妨一起探索这个充满无限可能的领域。 (238字符)
|
9月前
|
智能语音识别技术的最新进展与未来趋势####
【10月更文挑战第21天】 在当今这个信息爆炸的时代,人机交互方式正经历着前所未有的变革。本文深入探讨了智能语音识别技术的前沿动态,从深度学习模型的创新应用到跨语言、跨领域的适应性增强,揭示了该领域如何不断突破技术壁垒,提升用户体验的真实案例与数据支撑。通过对比分析当前主流算法的性能差异,本文旨在为研究者和开发者提供一幅清晰的技术演进蓝图,同时展望了多模态融合、情感识别等新兴方向的广阔前景。 ####
Ultravox:端到端多模态大模型,能直接理解文本和语音内容,无需依赖语音识别
Ultravox是一款端到端的多模态大模型,能够直接理解文本和人类语音,无需依赖单独的语音识别阶段。该模型通过多模态投影器技术将音频数据转换为高维空间表示,显著提高了处理速度和响应时间。Ultravox具备实时语音理解、多模态交互、低成本部署等主要功能,适用于智能客服、虚拟助手、语言学习等多个应用场景。
智能语音识别技术的深度剖析与应用前景####
本文深入探讨了智能语音识别技术的技术原理、关键技术突破及广泛应用场景,通过具体实例展现了该技术如何深刻改变我们的日常生活和工作方式。文章还分析了当前面临的挑战与未来发展趋势,为读者提供了一幅全面而深入的智能语音识别技术图景。 ####
免费试用