m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法

简介: **摘要:**升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。

1.算法仿真效果
本程序系统是《m基于深度学习的OFDM信道估计和均衡算法误码率matlab仿真,对比了LS,MMSE以及LMMSE等传统的信道估计算法》的的升级。

升级前原文章链接

增加了训练样本自动产生功能,算法复杂度对比功能,算法抗频偏性能分析功能。

matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法涉及理论知识概要
随着无线通信的快速发展,5G正逐渐成长为支撑全社会各行业运作的大型基础性互联网络,其服务范围的大幅扩展对底层技术提出了诸多挑战,尤其是作为物理层关键技术之一的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)。近来,深度学习因其在计算机视觉以及自然语言处理领域中的优异表现而备受关注,其极强的普适性也为传统通信提供了新的发展空间。就OFDM系统中的信道估计问题展开深入研究,探索深度学习在该领域的应用可能。

    信道估计器是接收机一个很重要的组成部分。在OFDM系统中,信道估计器的设计上要有两个问题:一是导频信息的选择,由于无线信道的时变特性,需要接收机不断对信道进行跟踪,因此导频信息也必须不断的传送: 二是既有较低的复杂度又有良好的导频跟踪能力的信道估计器的设计,在确定导频发送方式和信道估计准则条件下,寻找最佳的信道估计器结构。 **在实际设计中,导频信息的选择和最佳估计器的设计通常又是相互关联的,因为估计器的性能与导频信息的传输方式有关。     

 基于OFDM 的通信系统如下:

3a37fda98783d5dac583ecd24bdbad31_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于深度学习的信道估计:

   深度学习(英语:deep learning),是一个多层神经网络是一种机器学习方法。在深度学习出现之前,由于诸如局部最优解和梯度消失之类的技术问题,没有对具有四层或更多层的深度神经网络进行充分的训练,并且其性能也不佳。但是,近年来,Hinton等人通过研究多层神经网络,提高学习所需的计算机功能以及通过Web的开发促进培训数据的采购,使充分学习成为可能。结果,它显示出高性能,压倒了其他方法,解决了与语音,图像和自然语言有关的问题,并在2010年代流行。

   深度学习(Deep Learning, DL),由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其它相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。        基于深度学习的参数估计方法DL-CE,采用LS方法获取导频位置处的CFR,再通过所设计的深度学习估计网络获取各个数据符号位置的信道响应。由于在多径环境下,信道呈现频域选择性衰落,传统的线性插值方法无法跟踪信道的变化。基于深度学习的信道估计方法,同时估计信道响应与信道的频域相关系数,可以实时追踪信道的频域变化。

3.MATLAB核心程序```load DL_train\dl.mat
for i=1:length(SNR_dB)
i
Error = 0;
err_all = 0;
for iii=1:nloop(i)
%%
%以单天线方式产生测试信号
msg = rand(LenNc/4,1)>=0.5;
%turbo编码
seridata1 = func_turbo_code(msg,N,M);
seridata = [seridata1,zeros(1,Len
Nc-length(seridata1))]';
%QPSK映射
[Qpsk0,Dqpsk_pilot,symbol_bit] = func_piQPSK_mod(seridata);
%变换为矩阵
Qpsk_matrix = reshape(Qpsk0,fftlen,Nc);
[Pilot_in,pilot_num,Pilot_seq,pilot_space] = func_insert_pilot(Dqpsk_pilot,Qpsk_matrix,pilot_type,T,TG);
Pilot_in = fft(Pilot_in);
%sub carrier mapping
Pilot_in = func_subcarrierMap(Pilot_in);
%IFFT transform,产生OFDM信号
ifft_out = ifft(Pilot_in);
%插入包含间隔 ,循环前缀
Guard_int = ceil(BWs/fftlen);
Guard_int_ofdm = func_guard_interval_insert(ifft_out,fftlen,Guard_int);
%将矩阵数据转换为串行进行输出
Guard_int_ofdm_out = reshape(Guard_int_ofdm,1,(fftlen+Guard_int)*(Nc+pilot_num));

   %%
    %Step1:大规模MIMO信道
    [Hm,Hmmatrix]            = func_mychannels(Radius,Scale1,Scale2,Nh,Nv);       
    %Step2:多径参数和大规模MIMO参数输入到信道模型中
    %信道采样点数,每个调制符号采一个点
    [passchan_ofdm_symbol]   = func_conv_channels(Hmmatrix,Guard_int_ofdm_out,Nmultipath,Pow_avg,delay_multi,Fre_offset,timeval,iii);
    %Step3:噪声信道 
    Rec_ofdm_symbol          = awgn(passchan_ofdm_symbol,SNR_dB(i),'measured');

   %%
    %开始接收
    Guard_int_remove = func_guard_interval_remove(Rec_ofdm_symbol,(fftlen+Guard_int),Guard_int,(Nc+pilot_num));
    %FFT
    fft_out          = fft(Guard_int_remove);
    %sub carrier demapping
    fft_out          = func_desubcarrierMap(fft_out);
    fft_out          = ifft(fft_out);
    %信道估计
    %func_DL_est
    [Sig_Lrmmse,Hs]  = func_DLest(fft_out,pilot_space,Pilot_seq,pilot_num,delay_avg/timeval,4e-6/timeval,10^(SNR_dB(i)/10),Guard_int);
    %解调
    Dqpsk            = func_pideMapping(Sig_Lrmmse,fftlen*Nc);
    %turbo解码
    Dqpsk_decode     = [func_turbo_decode(2*Dqpsk(1:end-(Len*Nc-length(seridata1)))-1,N,M)]';
    %计算误码率
    err_num          = Len*Nc/4-length(find(msg==Dqpsk_decode(1:Len*Nc/4)));
    Error            = Error + err_num;
end
%计算误码率
err_all       = err_all+Len*Nc/4;
Err_Rate(i)   = Error/err_all/nloop(i);

end
......................................
0sj_001m
```

相关文章
|
1天前
|
机器学习/深度学习 存储 算法
基于SFLA算法的神经网络优化matlab仿真
**摘要:** 使用MATLAB2022a,基于SFLA算法优化神经网络,降低训练误差。程序创建12个神经元的前馈网络,训练后计算性能。SFLA算法寻找最优权重和偏置,更新网络并展示训练与测试集的预测效果,以及误差对比。SFLA融合蛙跳与遗传算法,通过迭代和局部全局搜索改善网络性能。通过调整算法参数和与其他优化算法结合,可进一步提升模型预测精度。
|
1天前
|
算法
基于仿射区间的分布式三相不对称配电网潮流算法matlab仿真
```markdown # 摘要 本课题聚焦于基于仿射区间的分布式三相配电网潮流算法在MATLAB2022a中的仿真。算法利用仿射运算处理三相不平衡情况及分布式电源注入,旨在提供比区间算法更精确的不确定区域。仿真结果展示了算法优势。核心程序设计考虑了PQ、PV及PI节点,将不同类型的节点转换统一处理,以适应含分布式电源的配电网潮流计算需求。 ``` 这个摘要以Markdown格式呈现,总字符数为233,满足了240字符以内的要求。
|
1天前
|
机器学习/深度学习 算法 数据可视化
基于googlenet深度学习网络的睁眼闭眼识别算法matlab仿真
**算法预览图展示睁眼闭眼识别效果;使用Matlab2022a,基于GoogLeNet的CNN模型,对图像进行分类预测并可视化。核心代码包括图像分类及随机样本显示。理论概述中,GoogLeNet以高效Inception模块实现眼部状态的深度学习识别,确保准确性与计算效率。附带三张相关图像。**
|
5天前
|
算法
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
6天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
6天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
4天前
|
算法 计算机视觉
基于Chan-Vese算法的图像边缘提取matlab仿真
**算法预览展示了4幅图像,从边缘检测到最终分割,体现了在matlab2022a中应用的Chan-Vese水平集迭代过程。核心代码段用于更新水平集并显示迭代效果,最后生成分割结果及误差曲线。Chan-Vese模型(2001)是图像分割的经典方法,通过最小化能量函数自动检测平滑区域和清晰边界的图像分割,适用于复杂环境,广泛应用于医学影像和机器视觉。**
|
9天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
28 6
|
6天前
|
缓存 算法
基于机会网络编码(COPE)的卫星网络路由算法matlab仿真
**摘要:** 该程序实现了一个基于机会网络编码(COPE)的卫星网络路由算法,旨在提升无线网络的传输效率和吞吐量。在MATLAB2022a中测试,结果显示了不同数据流个数下的网络吞吐量。算法通过Dijkstra函数寻找路径,计算编码机会(Nab和Nx),并根据编码机会减少传输次数。当有编码机会时,中间节点执行编码和解码操作,优化传输路径。结果以图表形式展示,显示数据流与吞吐量的关系,并保存为`R0.mat`。COPE算法预测和利用编码机会,适应卫星网络的动态特性,提高数据传输的可靠性和效率。
|
9天前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。