RAG效果不佳?先别急着微调模型,这几个关键节点才是优化重点
本文深入探讨了RAG(Retrieval Augmented Generation)技术的实现细节与优化策略,指出在AI应用开发中,RAG常被视为黑盒导致问题定位困难。文章从文档分块(Chunking)、索引增强(语义增强与反向HyDE)、编码(Embedding)、混合检索(Hybrid Search)到重排序(Re-Ranking)等关键环节进行了详细解析,强调需结合具体场景对各模块进行调优,以提升召回率与精确率的平衡,并倡导从快速使用走向深度优化的实践路径。
从 Prompt 到 Context:基于 1400+ 论文的 Context Engineering 系统综述
本文探讨了Prompt Engineering的发展趋势及其扩展——Context Engineering的重要性。随着大语言模型(LLM)的发展,构建合适的上下文(context)成为影响模型性能的关键因素。Context Engineering不仅包括传统的提示词工程,还涵盖了上下文的构建、管理与优化,被视为LLM时代的新软件工程范式。文章结合最新研究成果与行业实践,系统解析了Context Engineering的概念、分类、挑战及其在LLM应用中的核心作用,帮助开发者更好地理解和应用这一新兴技术。
SoapUI界面不支持中文?更多选择在这里
SoapUI是一款经典的国外API测试工具,广泛应用于开发与测试领域。由于其未提供官方中文支持,部分用户转向Apifox等本土化工具。Apifox具备中文界面、功能全面,涵盖API调试、文档、Mock与自动化测试,助力团队高效协作。随着API测试工具不断发展,多语言与本地化支持正成为提升用户体验与竞争力的关键方向。