路径规划算法:基于指数分布优化的机器人路径规划算法- 附matlab代码

简介: 路径规划算法:基于指数分布优化的机器人路径规划算法- 附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

机器人路径规划是人工智能领域中的一个重要研究方向,它涉及到如何让机器人在复杂环境中找到最优的路径以完成任务。在实际应用中,机器人路径规划算法的效率和准确性对于机器人的运行效果和任务完成能力起着至关重要的作用。

近年来,基于指数分布优化的机器人路径规划算法逐渐受到研究者的关注。这种算法通过引入指数分布来模拟机器人在路径规划过程中的决策选择,从而提高路径规划的效率和准确性。

在传统的机器人路径规划算法中,常用的方法是基于图搜索的算法,如A*算法和Dijkstra算法。这些算法通过在地图上搜索最短路径或最优路径来实现机器人的路径规划。然而,这些算法在处理复杂环境时存在一些问题,如搜索空间过大、计算复杂度高等。

相比之下,基于指数分布优化的机器人路径规划算法能够更好地应对这些问题。该算法通过引入指数分布作为决策选择的概率分布,可以有效地减小搜索空间,降低计算复杂度。同时,指数分布还能够提高路径规划的准确性,使机器人能够更好地适应复杂环境。

具体来说,基于指数分布优化的机器人路径规划算法包括以下几个步骤:

    1. 地图建模:将机器人所处的环境建模成一个图,其中每个节点表示一个位置,每条边表示两个位置之间的可行路径。
    2. 目标设定:根据任务需求,确定机器人的起始位置和目标位置。
    3. 路径搜索:通过引入指数分布作为决策选择的概率分布,从起始位置开始搜索最优路径。在搜索过程中,根据机器人所处位置的周围环境信息,计算每个可行路径的指数分布值,并选择具有最大指数分布值的路径作为下一步的移动方向。
    4. 路径优化:在得到最优路径后,对路径进行优化,去除冗余的节点和边,从而得到更简洁和高效的路径。

    基于指数分布优化的机器人路径规划算法在实际应用中取得了显著的效果。通过引入指数分布,该算法能够在复杂环境中快速搜索到最优路径,并且能够适应环境的变化,具有较强的鲁棒性。此外,该算法的计算复杂度相对较低,适用于实时路径规划。

    然而,基于指数分布优化的机器人路径规划算法仍然存在一些挑战和改进空间。首先,如何确定合适的指数分布参数是一个关键问题,需要进一步研究和优化。其次,该算法在处理多机器人协同路径规划时还存在一定的困难,需要进一步探索解决方案。

    总的来说,基于指数分布优化的机器人路径规划算法是一种有潜力的路径规划方法。通过引入指数分布,该算法能够提高路径规划的效率和准确性,并具有较低的计算复杂度。随着进一步的研究和改进,相信这种算法将在机器人路径规划领域发挥更大的作用。

    室内环境栅格法建模步骤

    1.栅格粒大小的选取

    栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

    栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

    2.障碍物栅格确定

    当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

    3.未知环境的栅格地图的建立

    通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

    备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

    目标函数设定

    image.gif编辑

    ⛄ 部分代码

    function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点for i=1:L-1    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)    hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

    ⛄ 运行结果

    image.gif编辑

    image.gif编辑

    ⛄ 参考文献

    [1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].

    [2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.

    [3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).

    ⛳️ 代码获取关注我

    ❤️部分理论引用网络文献,若有侵权联系博主删除
    ❤️ 关注我领取海量matlab电子书和数学建模资料

    🍅 仿真咨询

    1 各类智能优化算法改进及应用

    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

    2 机器学习和深度学习方面

    卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

    2.图像处理方面

    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

    3 路径规划方面

    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

    4 无人机应用方面

    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

    5 无线传感器定位及布局方面

    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

    6 信号处理方面

    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

    7 电力系统方面

    微电网优化、无功优化、配电网重构、储能配置

    8 元胞自动机方面

    交通流 人群疏散 病毒扩散 晶体生长

    9 雷达方面

    卡尔曼滤波跟踪、航迹关联、航迹融合


    相关文章
    |
    1月前
    |
    机器学习/深度学习 人工智能 自然语言处理
    【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
    TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
    208 65
    |
    23天前
    |
    算法 BI Serverless
    基于鱼群算法的散热片形状优化matlab仿真
    本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
    |
    23天前
    |
    算法 数据可视化
    基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
    奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
    |
    20天前
    |
    机器学习/深度学习 存储 算法
    经典算法代码
    这段代码展示了多个经典算法,包括:穷举法解决“百钱买百鸡”问题;递推法计算“猴子吃桃”问题;迭代法求解斐波那契数列及折纸高度超越珠峰的问题。同时,还提供了希尔排序算法实现及披萨票务订购系统和汉诺塔问题的链表存储解决方案。每部分通过具体案例解释了算法的应用场景与实现方法。
    21 3
    |
    24天前
    |
    资源调度 算法
    基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
    本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
    |
    25天前
    |
    算法
    基于SIR模型的疫情发展趋势预测算法matlab仿真
    该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
    |
    25天前
    |
    算法 数据可视化 数据安全/隐私保护
    基于LK光流提取算法的图像序列晃动程度计算matlab仿真
    该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
    |
    7天前
    |
    算法
    基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
    该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
    |
    10天前
    |
    机器学习/深度学习 算法
    基于心电信号时空特征的QRS波检测算法matlab仿真
    本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
    |
    10天前
    |
    机器学习/深度学习 算法 数据安全/隐私保护
    基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
    本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。

    热门文章

    最新文章