MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集

简介: MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集

全文链接:http://tecdat.cn/?p=32594


在当今信息爆炸的时代,电影作为人们生活中不可或缺的娱乐方式,受到了越来越多的关注点击文末“阅读原文”获取完整代码数据


而为了让观众能够更好地选择适合自己口味的电影,推荐系统成为了一个备受关注的研究领域。协同过滤算法是其中一种被广泛使用的方法。

本文将以MovieLens数据集为基础,帮助客户分析MATLAB模糊C均值聚类改进的协同过滤算法在推荐系统中的应用。针对MovieLens数据集进行实验,并比较传统协同过滤算法和改进后的模糊C均值聚类协同过滤算法的性能差异。最后结合实验结果进行分析和总结。

1. 首先需要了解什么是模糊C均值聚类和协同过滤算法。

  • 模糊C均值聚类(FCM)是一种基于隶属度的聚类方法,它将每个数据点对应到各个聚类中心的隶属度上。
  • 协同过滤算法是一种推荐系统算法,主要用于预测用户对未评价物品的喜欢程度。该算法基于相似性进行推荐,即根据用户行为历史信息来发现不同用户之间的相似性,并根据这些相似性为用户推荐物品。

2. 然后需要了解如何将这两种算法结合起来实现数据分析。

  • 在协同过滤算法中,我们需要计算不同用户之间或者不同物品之间的相似度。而这里可以使用模糊C均值聚类来实现。
  • 具体地说,在MovieLens数据集中,我们可以将每一个电影看作是一个向量,其中包括电影名称、导演、演员、类型等特征。然后使用模糊C均值聚类将这些电影聚类到不同的簇中。
  • 接着,我们可以计算用户和簇之间的相似度,进而推荐给用户可能感兴趣的电影。

3. 最后需要注意哪些细节问题。

  • 在使用模糊C均值聚类时,需要选择合适的参数来控制隶属度和聚类个数等因素。这需要根据具体情况进行调整。本文使用了4个聚类有效性函数值来选取最优聚类数。
  • 在计算相似度时,需要选择合适的距离或者相似性度量方法。同时还要考虑如何处理缺失数据、异常值等问题。


数据


MovieLens数据是美国Minnesota大学GroupLens项目组提供的Movielens数据集ml-100k中的u2数据。这个数据集包含了943名用户对1682部电影的评价(评分值为数字1到5,若数值越高则用户喜爱该电影的程度越高),并含有电影项目的分类特征。该数据集仅包含了评价过20部以上电影的用户评价数据,没有评分的电影数据占所有数据的比重(稀疏度)为94%。

image.png

名称 描述 简介 每个用户至少评分物品
MovieLens 对电影的评分从1到5 943名用户对1682部电影的评价 100

评分预测的预测准确度一般通过平均绝对误差 (MAE) 计算,平均绝对偏差越小,预测的准确度越高。

 

过程与结果分析


(1)确定最佳聚类数

首先,通过比较不同聚类数相应的聚类有效性函数值来选出最佳聚类数cmax。实验结果如图所示。

图中的横坐标为聚类数,纵坐标为相应的4个聚类有效性函数值。由上述结果可知,在2到的最佳搜索范围中,不同的聚类数c得到的VPE值与VFC值呈单调趋势,而VXB与VK函数值均在c=12时单调性发生改变。

image.png

图1  MovieLens不同聚类数对应的聚类有效性函数值


点击标题查阅往期内容


python推荐系统实现(矩阵分解来协同过滤)


01

02

03

04


类似的,图1中的横坐标为聚类数,纵坐标为相应的4个聚类有效性函数值。由上述结果可知,在2到的最佳搜索范围中,不同的聚类数c得到的VPE值与VFC值呈单调趋势,而VXB与VK函数值均在c=12时单调性发生改变。

最后得到不同判别函数在不同数据集上的指标值如表1所示。

%XB 用Xie和Beni的准则来求最优聚类数
%   u为隶属度矩阵,center为聚类中心矩阵
V=0;
for i=1:size(u,1)
    for j=1:size(u,2)
    V=V+(u(i,j))^2*(norm(data(j,:)-center(i,:)))^2;    
    end
end
fenmu=(min(pdist(center,'euclidean')))^2;

表1 Xie-Beni方法确定的最佳聚类数cmax

判别函数 VPE VXB VFC VK
Movielens数据集 cmax>25 cmax=12 cmax>25 cmax=12

因此,根据Xie-Beni方法,本文选取Flixster数据集的最佳聚类数cmax为10,本文选取MovieLens数据集的最佳聚类数cmax为12。

(2)MAE指标比较

模糊C均值聚类算法的关键步骤是确定最佳聚类簇数,为检验本节给出的FCMC CF算法,我们在Movielens和Flixster数据集上进行了实验分析,并将其同K-means、K-medoids和K-mode聚类协同过滤算法进行了比较,实验结果如图所示。

%FCMC data为模糊C均值聚类的实验数据,top代表XB准则下的前10个最佳聚类数,b为该10个最佳聚类数的PE指标值
%  
for k=2:sqrt(size(data,1))
    [center u]=fcm(data,k);
    Vpe(k-1)=Bezdek(u);
    Vxb(k-1)=XB(u,center,data);
    Vfs(k-1)=FS( u,center,data);
    Vk(k-1)=Kwon( u,center,data);
end
k=2:sqrt(size(data,1));
    subplot(2,2,1),plot(k,Vpe(k-1),'- *'),xlabel('x(聚类簇数)'),ylabel('y(Vpe指标)')
k=2:sqrt(size(data,1));
subplot(2,2,2),plot(k,Vxb(k-1),'- or'),xlabel('x(聚类簇数)'),ylabel('y(Vxb指标)')
 
k=2:sqrt(size(data,1));
subplot(2,2,3),plot(k,Vfs(k-1),'- or'),xlabel('x(聚类簇数)'),ylabel('y(Vfs指标)')
k=2:sqrt(size(data,1));
Predict(i,j,D,data,itemN)
%j代表目标用户,i为j用户的邻居用户为i用户集,data为用户-物品矩阵,D为相似系数矩阵,item为用户j要预测的物品编号
tempu= find(data(j,:)~=0);%发现用户所有已评分的项目
Ru=mean(data(j,tempu));%计算用户评分的平均值
a=length(i);
fenzi=0;
for k=1:a
tempv=find(data(i(k),:)~=0);
Rv=mean(data(i(k),tempv));
fenzi=fenzi+D(j,i(k)).*(data(i(k),itemN)-Rv);
end
fenmu=0;
for k=1:a

image.png

图2 Movielens数据集不同算法MAE的比较

unction mae = MAE(CS,udata,udatatest,Fuz)
%CS为相似度矩阵,data为训练集用户项目矩阵,datatest为测试集用户项目矩阵,Fuz为标记变量(1为模糊C均值聚类协同过滤,0为传统系统过滤)
j=1;
for n=1:5:80%########最近邻数
mae(j)=0;%mae为最近邻为n的情况下的最小均方误差 
k=0;%计数变量
   for t=1:size(udatatest,1)
    
    i=topn(CS,t,n);%计算出该用户的最近邻用户集合,t为i目标用户编号,i为相邻用户编号(按相似度从高到低排列),n为n个邻居用户数,应设为?
    item=find(udatatest(t,:)~=0);%item为测试集中用户的评价项目
    if n>length(i)
           continue;

在图中,横轴为最近邻个数 k,纵轴为平均绝对偏差 MAE。曲线CF代表传统的协同过滤算法,曲线Kmean CF代表基于K均值聚类的协同过滤算法,曲线FCMC CF代表基于模糊C均值聚类有效性的协同过滤算法,曲线K medoids CF代表基于K medoids聚类的协同过滤算法。

由图可以看到基于有效性指标改进的FCMC CF算法在MAE指标上要明显优于其他算法。在Movielens数据集上的实验结果表明,FCMC CF得到的MAE值要优于其他几个算法。

(3)召回率和覆盖率的比较

在接下来的TOP-N实验中,我们选择FCMC CF算法与其他算法在召回率、覆盖率指标上进行比较。

%D为相似系数矩阵,i为第i个目标用户,n为前n个最相似的用户数,输出为前n个用户的坐标信息
[a,b]=sort(D(i,:),'descend');%a为从高到低排的相似系数
top=b(1:n);
I= ind2sub(size(D), top);%J目标用户编号,I相邻用户编号(按相似度从高到低排列)
 Recall(udata,udatatest,CS,Fuz)
Recall(udata,udatatest,CS,Fuz)
%UNTITLED Summary of this function goes here
%   Detailed explanation goes here
%N为推荐列表的长度,udata为用户项目评分矩阵
j=1;
for N=5:5:50
n=30;%n为目标用户的最近邻居用户数#######默认为3个
for q=1:size(udata,1)%计算每位用户对每个物品的预测评分
    for w=1:size(udata,2)
    I=topn(CS,q,n);%D为相似系数矩阵,i为第i个目标用户(即为q),n为前n个最相似的用户数(默认为3),输出为最近邻居用户的前n个用户的坐标信息
    rank(q,w)=Predict(I,q,CS,udata,w);%rank为用户项目预测评分矩阵,j代表目标用户(即为q),i为j用户的邻居用户为i用户集,data为用户-物品矩阵,D为相似系数矩阵,item为用户j要预测的物品编号(即为w)
    end
end

实验结果如图所示。

image.png

image.png

图4 不同算法召回率的比较

在图中,横轴代表推荐列表长度N,纵轴分别为召回率和覆盖率。其中,每个N值对应的两条曲线图分别为FCMC CF与CF、Kmeans CF对应的函数值。

FCMC CF算法与传统CF算法和Kmeans CF算法相比,在不同的最近邻水平下具有较高的召回率和覆盖率,即新算法在推荐质量上有所改善,有效地提升了推荐精度。

%%预测函数
predictfun2( CS, t,item ,n,udata)
%%其中CS为相似度矩阵
%%item为预测的项目编号
%%t为目标用户
%%n为近邻个数
%%udata为用户-项目评分矩阵
 
%%得到的预测评分为2.24
%%实际评分为3

image.png

相关文章
|
19天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于DCT变换和位平面分解的数字水印嵌入提取算法matlab仿真
这是一个关于数字水印算法的摘要:使用MATLAB2022a实现,结合DCT和位平面分解技术。算法先通过DCT变换将图像转至频域,随后利用位平面分解嵌入水印,确保在图像处理后仍能提取。核心程序包括水印嵌入和提取,以及性能分析部分,通过PSNR和NC指标评估水印在不同噪声条件下的鲁棒性。
|
4天前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
5天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的32QAM解调算法matlab性能仿真
```markdown - 32QAM解调算法运用BP神经网络在matlab2022a中实现,适应复杂通信环境。 - 网络结构含输入、隐藏和输出层,利用梯度下降法优化,以交叉熵损失最小化为目标训练。 - 训练后,解调通过前向传播完成,提高在噪声和干扰中的数据恢复能力。 ``` 请注意,由于字符限制,部分详细信息(如具体图示和详细步骤)未能在摘要中包含。
|
7天前
|
机器学习/深度学习 算法 网络架构
基于yolov2深度学习网络的单人口罩佩戴检测和人脸定位算法matlab仿真
摘要:该内容展示了一个基于YOLOv2的单人口罩佩戴检测和人脸定位算法的应用。使用MATLAB2022A,YOLOv2通过Darknet-19网络和锚框技术检测图像中的口罩佩戴情况。核心代码段展示了如何处理图像,检测人脸并标注口罩区域。程序会实时显示检测结果,等待一段时间以优化显示流畅性。
|
9天前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
26 4
|
9天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的16QAM解调算法matlab性能仿真
这是一个关于使用MATLAB2022a实现的16QAM解调算法的摘要。该算法基于BP神经网络,利用其非线性映射和学习能力从复数信号中估计16QAM符号,具有良好的抗噪性能。算法包括训练和测试两个阶段,通过反向传播调整网络参数以减小输出误差。核心程序涉及数据加载、可视化以及神经网络训练,评估指标为误码率(BER)和符号错误率(SER)。代码中还包含了星座图的绘制和训练曲线的展示。
|
11天前
|
机器学习/深度学习 算法
基于BP神经网络的QPSK解调算法matlab性能仿真
该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。
|
12天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
15天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
43 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长