MATLAB的符号计算

简介: MATLAB的符号计算

所谓符号计算是指在运算时,无须事先对变量赋值,而将所得到结果以标准的符号形式来表示。
例如,在符号变量运算过程中pi就用pi表示,而不是具体的近似数值3.14或3.14159。使用符号变量进行运算能最大限度减少运算过程中因舍入造成的误差。符号变量也便于进行运算过程的演示。

一、符号计算基础

(一) 定义符号变量
参与符号运算的对象可以是符号变量、符号表达式或符号矩阵。符号变量要先定义,后引用。可以用sym函数、syms函数将运算量定义为符号型数据。引用符号运算函数时,用户可以指定函数执行过程中的变量参数;若用户没有指定变量参数,则使用默认的变量作为函数的变量参数。

1、sym函数
sym函数的主要功能是创建符号变量,以便进行符号运算,也可以用于创建符号表达式或符号矩阵。用sym函数创建符号变量的一般格式为:

            x = sym(‘x’)

其目的是将’x’创建为符号变量,以x作为输出变量名。每次调用该函数,可以定义一个符号变量。

1
2
3
4
5
6
7
8
9
a=sym(‘a’); %定义‘a’为符号运算量,输出变量名为a
b=sym(‘b’);
x=sym(‘x’);
y=sym(‘y”);
[x,y]=solve(‘ax-by=1’, ‘ax+by=5’, ‘x’, ‘y’)

                            %以a,b为符号常数,x,y为符号变量

即可得到方程组的解:
x =3/a
y =2/b
(一) 定义符号变量

【例2】已知一复数表达式 z=x+i*y, 试求其共轭复数,并求该表达式与其共轭复数乘积的多项式。
为了使乘积表达式x^2+y^2非负,这里,把变量x和y定义为实数。
x=sym(‘x’,’real’);
y=sym(‘y’,’real’);

z=x+i*y; %定义复数表达式
conj(z); %求共轭复数
expand(z*conj(z)) %求表达式与其共轭复数乘积的

                          多项式

ans =
x^2+y^2
若要去掉’x’的属性,可以使用下面语句

 x = sym(‘x’,’unreal’) 

将’x’创建为纯格式的符号变量。

2、syms函数
syms函数的功能与sym函数类似。syms函数可以在一个语句中同时定义多个符号变量,其一般格式为:

      syms arg1 arg2 …argN 

用于将rg1, arg2,…,argN等符号创建为符号型数据。

(二)默认符号变量
在数学表达式中,一般习惯于使用排在字母表中前面的字母作为变量的系数,而用排在后面的字母表示变量。例如:

     f=ax2+bx+c

表达式中的a,b,c通常被认为是常数,用作变量的系数;而将x看作自变量。

例如,数学表达式

     f=xn
     g=sin(at+b)

根据数学式中表示自变量的习惯,默认a,b,c为符号常数,x为符号变量。
若在MATLAB中表示上述表达式,首先用syms 函数定义a,b,n,t,x为符号对象。在进行导数运算时,由于没有指定符号变量,则系统采用数学习惯来确定表达式中的自变量,默认a,b,c为符号常数,x,t为符号变量。
即 : 对函数f求导为:df/dx

        对函数g求导为:dg/dt


(四) 生成符号函数
将表达式中的自变量定义为符号变量后,赋值给符号函数名,即可生成符号函数。例如有一数学表达式:

其用符号表达式生成符号函数fxy的过程为:

 syms a b c x y              %定义符号运算量
 fxy=(a*x^2+b*y^2)/c^2      %生成符号函数

生成符号函数fxy后,即可用于微积分等符号计算。

1
2
3
4
5
6
7
8
9
【例4】定义一个符号函数 fxy=(ax2+by2)/c2 ,分别求该函数对x、y的导数和对x的积分。
syms a b c x y %定义符号变量
fxy=(ax^2+by^2)/c^2; %生成符号函数
diff(fxy,x) %符号函数fxy对x求导数
ans =2ax/c^2
diff(fxy, y) %符号函数fxy对y求导数
ans =2by/c^2
int(fxy, x) %符号函数fxy对x求积分
ans =1/c^2(1/3ax^3+by^2*x)
(五)标准代数运算

很多标准的代数运算可以在符号表达式上执行,函数symadd、symsub、symmul和symdiv为加、减、乘、除两个表达式,sympow将一个表达式上升为另一个表达式的幂次。

f= ' 2x^2+3x-5 ' % define the symbolic expression

f=
2 x^2+3x-5
g= ' x^2-x+7 '
g=
x^2-x+7

symadd(f,g) % find an expression for f+g
ans= 3x^2+2x+2
symsub(f,g) % find an expression for f-g
ans= x^2+4*x-12
symmul(f,g) % find an expression for f*g
ans= (2x^2+3x-5)*(x^2-x+7)
symdiv(f,g) % find an expression for f/g
ans= (2x^2+3x-5)/(x^2-x+7)
sympow(f, ' 3*x ' ) % the same as sym(A)^sym(B)
ans= (2x^2+3x-5)^3*x

目录
相关文章
|
11天前
|
传感器 编解码 监控
【三维成像】45公里距离下的单光子计算三维成像研究(Matlab代码实现)
【三维成像】45公里距离下的单光子计算三维成像研究(Matlab代码实现)
|
4月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
10天前
|
存储 并行计算 算法
【前推回代法】含有分布式电源的三相不平衡配电网潮流计算【IEEE33节点】(Matlab代码实现)
【前推回代法】含有分布式电源的三相不平衡配电网潮流计算【IEEE33节点】(Matlab代码实现)
|
13天前
|
算法 数据可视化 Serverless
通过求解泊松方程来计算双偶极子的电场研究(Matlab代码实现)
通过求解泊松方程来计算双偶极子的电场研究(Matlab代码实现)
|
6月前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
124 14
|
7月前
|
算法
MATLAB在风险管理中的应用:从VaR计算到压力测试
本文介绍如何使用MATLAB进行风险管理,涵盖风险度量(如VaR)、压力测试和风险分解。通过历史模拟法、参数法和蒙特卡洛模拟法计算VaR,评估投资组合在极端市场条件下的表现,并通过边际VaR和成分VaR识别风险来源。结合具体案例和代码实现,帮助读者掌握MATLAB在风险管理中的应用,确保投资组合的稳健性。
基于粒子滤波器的电池剩余使用寿命计算matlab仿真
本研究基于粒子滤波器预测电池剩余使用寿命(RUL),采用MATLAB2022a实现。通过非线性动力学模型模拟电池老化过程,利用粒子滤波器处理非线性和非高斯问题,准确估计电池SOH变化趋势,进而预测RUL。系统仿真结果显示了良好的预测性能。
|
11月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
11月前
|
算法
MATLAB符号计算
【10月更文挑战第9天】MATLAB不仅擅长数值计算,还具备强大的符号计算功能,支持代数运算、方程求解、微积分等。本文介绍如何使用MATLAB的符号工具箱进行符号变量定义、方程求解、微分积分及矩阵运算,并通过多个实际应用案例展示了其在机械系统、电路分析、经济优化和物理运动学等领域的应用。此外,文章还提供了符号计算的最佳实践和未来展望。
|
12月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。

热门文章

最新文章