【BP分类】基于花朵授粉算法优化BP神经网络实现数据分类附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
EMR Serverless StarRocks,5000CU*H 48000GB*H
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【BP分类】基于花朵授粉算法优化BP神经网络实现数据分类附matlab代码

 1 简介

为了提高分类的准确性,降低因预测精度不高带来的电能损失,提出将花朵授粉算法(flower pollination algorithm,FPA)与BP神经网络相结合,利用FPA算法具有收敛速度快,全局搜索能力强的特点,对BP神经网络的权值和阈值进行优化,改善传统BP神经网络因权值和阈值的选择具有随机性而陷入局部最优和收敛速度慢的缺点.最后,通过某地区实际负荷数据验证了优化后的BP神经网络的预测精度得到了提高.

2 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Flower Pollination Algorithm for Multimodal Optimization (MFPA)%Jorge G醠vez, Erik Cuevas and Omar Avalos%%This is the line to execute the code:%%[mem,bestSol,bestFit,optima,FunctionCalls]=FPA([500.255002]);%FitFunc implements the function to be optimized%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [mem,bestSol,bestFit,optima,FunctionCalls]=FPA(para)% Default parametersif nargin<1,   para=[50 0.25 500];   endn=para(1);           % Population sizep=para(2);           % Probabibility switchN_iter=para (3);  % Number of iterationsphase = 1; %First statephaseIte= [0.5,0.9,1.01]; %State vector%Deb Functiond = 1;Lb = 0;Ub = 1;optima =  [.1;.3;.5;.7;.9];% Initialize the populationfor i=1:n,  Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);  Fitness(i)=fitFunc(Sol(i,:));  %%Evaluate fitness functionend% Initialice the memory[mem,bestSol,bestFit,worstF] = memUpdate(Sol,Fitness, [], zeros(1,d), 100000000, 0, phase,d,Ub,Lb);S = Sol;FunctionCalls = 0;% Main Loopfor ite = 1 : N_iter,                    %For each pollen gamete, modify each position acoording                    %to local or global pollination                    for i = 1 : n,                                % Switch probability                                if rand>p,                                                                                        L=Levy(d);                                            dS=L.*(Sol(i,:)-bestSol);                                            S(i,:)=Sol(i,:)+dS;                                            S(i,:)=simplebounds(S(i,:),Lb,Ub);                                else                                            epsilon=rand;                                            % Find random flowers in the neighbourhood                                            JK=randperm(n);                                            % As they are random, the first two entries also random                                            % If the flower are the same or similar species, then                                            % they can be pollenated, otherwise, no action.                                            % Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)                                            S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));                                            % Check if the simple limits/bounds are OK                                            S(i,:)=simplebounds(S(i,:),Lb,Ub);                                end                                Fitness(i)=fitFunc(S(i,:));                    end                    %Update the memory                    [mem,bestSol,bestFit,worstF] = memUpdate(S,Fitness,mem,bestSol,bestFit,worstF,phase,d,Ub,Lb);                                       Sol = get_best_nest(S, mem, p);                                      FunctionCalls = FunctionCalls + n;                                   if ite/N_iter > phaseIte(phase)                        %Next evolutionary process stage                        phase = phase + 1;                        [m,~]=size(mem);                        %Depurate the memory for each stage                        mem = cleanMemory(mem);                        FunctionCalls = FunctionCalls + m;                   endend%Plot the solutions (mem) founded by the multimodal frameworkx = 0:.01:1;y = ((sin(5.*pi.*x)).^ 6);plot(x,y)hold onplot(mem(:,1),-mem(:,2),'r*');

3 仿真结果

image.gif编辑

4 参考文献

[1]牛庆、曹爱民、陈潇一、周冬. 基于花朵授粉算法和BP神经网络的短期负荷预测[J]. 电网与清洁能源, 2020, 36(10):5.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
15 3
|
11天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
17天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)