m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真

简介: MATLAB2022a仿真实现了Offset Min-Sum (OMS)译码算法与粒子群优化(PSO)结合,以优化偏移参数,提升LDPC码解码性能。PSO通过迭代寻找最小化误码率(BER)的最佳偏移量。核心程序运用PSO进行参数更新和适应度函数(BER)评估,最终在不同信噪比下展示OMS解码性能,并保存结果。

1.算法仿真效果
matlab2022a仿真结果如下:

7a118085a46d077cb6751720cb237aa2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
e12e0080a0c02b626b3db67dfdac7303_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
Offset Min-Sum(OMS)译码算法是LDPC码的一种低复杂度迭代解码方法,它通过引入偏移量来减轻最小和算法中的量化效应,从而提高解码性能。当应用粒子群优化(PSO)来计算OMS译码算法中的最优偏移参数时,目标是自动找到能够最大化解码性能(如最小化误码率)的偏移量值。

   PSO算法由粒子群、个体最优解(pBest)和全局最优解(gBest)三部分组成。每个粒子代表一个可能的解(在这里是归一化参数),通过迭代更新自己的位置(即解码参数)来逼近全局最优解。粒子的位置xi​和速度vi​在每一代(迭代)中按如下公式更新:

8007055c44ee7f1d7fd89c16baa850ed_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

PSO应用于OMS偏移参数优化

初始化:随机生成一组粒子,每个粒子代表一个偏移参数γ的初始值,通常在合理范围内,如([-1, 1])。
适应度函数:定义适应度函数,通常为误码率(BER),越低的BER意味着更高的适应度值。
迭代优化:通过PSO的迭代过程,根据粒子在不同γ值下的解码性能(适应度),不断调整粒子的位置(即偏移量值),直至找到使BER最小化的最优γ。
3.MATLAB核心程序
```for i=1:Iter
i
for j=1:Npeop
if func_obj(x1(j,:))<pbest1(j)
p1(j,:) = x1(j,:);%变量
pbest1(j) = func_obj(x1(j,:));
end
if pbest1(j)<gbest1
g1 = p1(j,:);%变量
gbest1 = pbest1(j);
end

    v1(j,:) = Wmax*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));
    x1(j,:) = x1(j,:)+v1(j,:); 

    for k=1:dims
        if x1(j,k) >= Xmax
           x1(j,k) = Xmax;
        end
        if x1(j,k) <= Xmin
           x1(j,k) = Xmin;
        end
    end

    for k=1:dims
        if v1(j,k) >= Vmax
           v1(j,k) =  Vmax;
        end
        if v1(j,k) <= Vmin
           v1(j,k) =  Vmin;
        end
    end

end
Error2(i)=gbest1 

end
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

bb = g1;
N = 2016;
K = 1008;
R = K/N;
%H矩阵
[ H, Hp, Hs ] = func_H();

SNR = 0:0.5:3;
Ber = zeros(1, length(SNR));
Fer = zeros(1, length(SNR));

%译码迭代次数
Iters = 8;
.................................................................
fitness=mean(Ber);

figure
semilogy(SNR, Ber,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);

xlabel('Eb/N0(dB)');
ylabel('Ber');
title(['OMS,GA优化后的alpha = ',num2str(bb)])
grid on;
save OMS3.mat SNR Ber Error2 bb
0X_058m

```

相关文章
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
49 31
|
3天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
12天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
13天前
|
算法
超市火灾烟雾蔓延及人员疏散的matlab模拟仿真,带GUI界面
本项目基于MATLAB2022A开发,模拟了大型商业建筑中火灾发生后的人员疏散与烟雾扩散情况。算法通过设定引导点指导人员疏散,考虑视野范围、随机运动及多细胞竞争同一格点的情况。人员疏散时,根据是否处于烟雾区调整运动策略和速度,初始疏散采用正态分布启动。烟雾扩散模型基于流体方程,考虑了无风环境下的简化。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
存储 算法 数据安全/隐私保护
基于方块编码的图像压缩matlab仿真,带GUI界面
本项目展示了基于方块编码的图像压缩算法,包括算法运行效果、软件环境(Matlab 2022a)、核心程序及理论概述。算法通过将图像划分为固定大小的方块并进行量化、编码,实现高效压缩,适用于存储和传输大体积图像数据。
|
15天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
下一篇
DataWorks