基于FPGA的图像PSNR质量评估计算实现,包含testbench和MATLAB辅助验证程序

简介: 基于FPGA的图像PSNR质量评估计算实现,包含testbench和MATLAB辅助验证程序

1.算法运行效果图预览
设置较大的干扰,PSNR=15。

f42779aee1985488240248b895ca2a4e_82780907_202312262208030084914136_Expires=1703600283&Signature=anHUuahhydtkrWgtFo6%2FUThICPA%3D&domain=8.jpeg

设置较小的干扰,PSNR=25。

7e7ac7ff0bc18b7461a691eb46e09e6f_82780907_202312262208150146358249_Expires=1703600295&Signature=MQwfEsJXv8jeFLMnc6VeAQhbEw8%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

vivado2019.2

3.算法理论概述
基于FPGA的图像PSNR(峰值信噪比)质量评估计算实现涉及到数字图像处理、硬件设计和编程等多个领域。PSNR是一种用于评估图像质量的指标,它衡量了原始图像和经过处理后的图像之间的相似程度。PSNR值越大,表示处理后的图像质量越好。基于FPGA的图像PSNR质量评估计算实现通过硬件加速,可以实现对图像质量的实时评估,为图像处理算法的优化和调试提供有力的支持。

PSNR的计算公式如下:

PSNR = 10 × log10((MAX_I^2) / MSE)

   其中,MAX_I表示图像的最大像素值,MSE表示原始图像和处理后的图像之间的均方误差。均方误差的计算公式如下:

MSE = (1 / (M × N)) × ΣΣ[I(i,j) - K(i,j)]^2

   其中,I(i,j)表示原始图像中像素(i,j)的灰度值,K(i,j)表示处理后图像中像素(i,j)的灰度值,M和N分别表示图像的行数和列数。

  基于FPGA的图像PSNR质量评估计算实现需要将上述数学公式转化为硬件电路,通过编程实现对图像的实时处理和质量评估。具体步骤如下:

图像输入:将待评估的图像数据输入到FPGA中。
计算均方误差:根据输入的原始图像和处理后的图像,计算它们之间的均方误差。这需要设计相应的硬件电路,对每个像素进行差值平方和累加操作。
计算PSNR:根据计算得到的均方误差和图像的最大像素值,计算PSNR值。这需要设计相应的硬件电路,实现上述PSNR计算公式的功能。
输出结果:将计算得到的PSNR值输出到显示器或其他输出设备中,完成图像质量评估。
综上所述,基于FPGA的图像PSNR质量评估计算实现需要结合数字图像处理、硬件设计和编程等多个领域的知识,通过合理的算法设计和硬件优化,实现对图像质量的实时评估和提升。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] tmps1 [0:100000];
reg [7:0] tmps2 [0:100000];
reg [7:0] Images1;
reg [7:0] Images2;
wire [7:0] o_PSNR;
integer fids1,fids2,idx=0,dat1,dat2;

//D:\FPGA_Proj\FPGAtest\codepz\test0N.bmp 路径改为自己的路径

initial
begin
fids1 = $fopen("D:\FPGA_Proj\FPGAtest\codepz\test0.bmp","rb");
dat1 = $fread(tmps1,fids1);
$fclose(fids1);
fids2 = $fopen("D:\FPGA_Proj\FPGAtest\codepz\test0N.bmp","rb");
dat2 = $fread(tmps2,fids2);
$fclose(fids2);
end

initial
begin
i_clk=1;
i_rst=1;

1000;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
if(idx<=66613)
begin
Images1<=tmps1[idx];
Images2<=tmps2[idx];
end
else begin
Images1<=8'd0;
Images2<=8'd0;
end
idx<=idx+1;
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_images1 (Images1),
.i_images2 (Images2),
.o_PSNR (o_PSNR)
);

//integer fout1;
//initial begin
// fout1 = $fopen("medfilter.txt","w");
//end

//always @ (posedge i_clk)
// begin
// if(idx<=67131)
// $fwrite(fout1,"%d\n",o_medfilter);
// else
// $fwrite(fout1,"%d\n",0);
//end

endmodule

```

相关文章
|
8月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
9月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
320 74
|
7月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
|
7月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
127 0
|
7月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
9月前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
11天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
10天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
10天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
98 14

热门文章

最新文章