中文竞技场-中文大模型比比看
今天,大语言模型正在各个应用领域引起巨大的变革,并已经在搜索、金融、办公、安全、教育、游戏、电商、社交媒体等领域迅速普及和应用。例如微软将 GPT4应用于必应搜索引擎和 Office 办公软件。几乎每个企业都试图探索如何将AI融入业务和技术中去。但以中文为主的语言大模型却缺少应有的关注,今天让我们聚焦中文竞技场,看看各种中文大语言模型的表现吧~
社区供稿 | 达摩院自研开放域文本理解大模型登陆魔搭社区
SeqGPT是一个不限领域的文本理解大模型。无需训练,即可完成实体识别、文本分类、阅读理解等多种任务。该模型基于Bloomz在数以百计的任务数据上进行指令微调获得。模型可以在低至16G显存的显卡上免费使用。目前SeqGPT已经在魔搭社区开源,欢迎体验!
ModelScope大模型测评
近年来,随着人工智能技术的不断发展,大模型已经成为了人工智能领域的重要研究方向。大模型是指拥有数百万甚至数十亿个参数的神经网络模型,能够完成许多复杂的任务,如自然语言处理、图像识别等。大模型的出现极大地推动了人工智能技术的发展,也为人类社会带来了巨大的变革。
【手把手教程】无限场景风格LoRA与固定人物LoRA的融合-酷蛙FaceChain0826周记(GitHub已4K Star!)
酷蛙FaceChain项目计划后续联合社区的力量不断打磨该开源项目,解锁更多高阶玩法(比如人物表情包、人物连环画故事、虚拟试衣间……),并进行更深层次的算法创新,发表相应顶会论文。
中文竞技场大模型评测(AI从业者评测)
随着OpenAI研发的GPT大模型大火,市场意识到大模型的潜力与商机。2023年作为“大模型元年”,在这一年里,国内诞生了成千上万的大模型,但有大模型不意味着就能好,好的大模型才是市场上所需要的,那么怎么做出好的大模型呢?接下来将会介绍如何去评测大模型。
通义千问开源第二波!多模态来啦!(内含魔搭最佳实践)
近期,通义千问大规模视觉语言模型Qwen-VL上线魔搭社区,Qwen-VL以通义千问70亿参数模型Qwen-7B为基座语言模型研发,支持图文输入,具备多模态信息理解能力。
damo/cv_unet_universal-matting 这个通用抠图模型好像有问题,有达摩院的小伙伴在么
damo/cv_unet_universal-matting无法对物品抠图
0提示词1张图片生成视频!含魔搭社区图生视频最佳实践
近期,一条由AI全流程制作的《流浪地球3》预告短片大火,不禁让人惊叹一把生成式AI真的有在悄悄惊艳所有人,也给AI驱动视频创作市场提供了更大的想象空间。
“智海-录问”法律大模型正式发布并开源在魔搭社区,行业首个法律大模型评估指标体系公开
8月21日,由中国工程院院刊《Engineering》、中国人工智能学会、中国工程院院刊信息与电子工程领域分刊《FITEE》联合主办的Engineering大讲堂暨“智行中国”第五期系列论坛在浙江大学举行,论坛围绕基座模型基础理论、AI+X垂直领域赋能应用及基座模型评测体系等问题邀请领域专家展开了深入探讨。
用Modelscope 中文竞技场的测评体验分享
用Modelscope 中文竞技场的测评体验分享体验了三个场景,分别体验1系统默认的问题提交体验; 2.根据任务问题体验; 3.自主式提问题体验。就系统给出的答案进行评测。
社区供稿 | 10G显存,通义千问-7B-int4消费级显卡最佳实践
在魔搭社区,通义千问团队发布了Qwen-7B-Chat的Int4量化模型,Qwen-7B-Chat-Int4。该方案的优势在于,它能够实现几乎无损的性能表现,模型大小仅为5.5GB,内存消耗低,速度甚至超过BF16。
社区供稿 | 达摩院多模态对话大模型猫头鹰mPLUG-Owl大升级,登顶MMBench
近日,在上海人工智能实验室发布的多模态大模型榜单MMBench中,来自达摩院的mPLUG-Owl 超过MiniGPT4,LLaVA,VisualGLM等14个多模态大模型,登顶榜首。目前,mPLUG-Owl最新的预训练,SFT模型都已在ModelScope开源,欢迎大家体验。
酷蛙FaceChain开源项目迭代周记2023-08-19
酷蛙FaceChain开源项目(https://github.com/modelscope/facechain)上线首周即获取超过3K Star,并登顶GitHub Trending榜单TOP 1。
InsTag:大语言模型监督微调数据标签标注工具
魔搭社区发布了一个名为“InsTagger”的工具,用于分析LLM(大语言模型)中符合人类偏好的监督微调(SFT)数据。InsTagger 是基于 InsTag 方法训练的本地指令标签标注器,用于为符合人类偏好的监督微调数据集中的指令标注描述其意图和语义的标签,从而指导指令的分流或监督微调数据集的分析。
ModelScope中文模型测评
Modelscope可以帮助研究人员和开发者对模型进行性能分析等。本次我体验了知识常识,人类价值观和写作创作相关这三个对话类型场景,下面是我对测试模型的分析与看法
ModelScope中文竞技场模型测试
ModelScope中文竞技场是一个创新性的应用测试平台,专注于评估和提升自然语言处理(NLP)模型在中文语境下的性能。该平台为研究人员、工程师和数据科学家提供了一个丰富多样的测试环境,用于测试和比较不同NLP模型在各种任务上的表现。这也使的我们了解它们在不同任务上的相对表现,选择更适合使用场景的回答。下面👇就是基于该应用测试结果(使用到的对话类型为:代码相关,人类价值观,NLP 专业领域):
【新知测评实验室】解谜扫描全能王——“智能高清滤镜”黑科技
扫描技术已经被广泛应用于如办公(文件、名片、发票)、学习(笔记、试卷)、个人生活(证件、照片)、商务(收据、发票)、法律(合同、证据)等等各个领域。然而,现实图像中常常会出现一系列模糊、阴暗、褶皱、污渍、光线、透字等问题,如下面是一张很常见的笔记照片,照片中的褶皱和版面弯曲严重影响了图像质量和可读性,经过传统扫描工具如打印机、扫描仪扫描后仍然难以到达实用性和可用性。近期,合合信息旗下扫描全能王全新上线了一款“智能高清滤镜”黑科技,。本篇文章将对此一探究竟,从深层原理和测试对比来揭开其神秘面纱。