【赵渝强老师】基于ZooKeeper实现Hadoop HA
本文介绍了如何在4个节点(bigdata112、bigdata113、bigdata114和bigdata115)上部署HDFS高可用(HA)架构,并同时部署Yarn的HA。详细步骤包括环境变量设置、配置文件修改、ZooKeeper集群启动、JournalNode启动、HDFS格式化、ZooKeeper格式化以及启动Hadoop集群等。最后通过jps命令检查各节点上的后台进程,确保部署成功。
【赵渝强老师】大数据生态圈中的组件
本文介绍了大数据体系架构中的主要组件,包括Hadoop、Spark和Flink生态圈中的数据存储、计算和分析组件。数据存储组件包括HDFS、HBase、Hive和Kafka;计算组件包括MapReduce、Spark Core、Flink DataSet、Spark Streaming和Flink DataStream;分析组件包括Hive、Spark SQL和Flink SQL。文中还提供了相关组件的详细介绍和视频讲解。
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
【赵渝强老师】基于RBF的HDFS联邦架构
最新版Hadoop实现了基于Router的联盟架构,增强了集群管理能力。Router将挂载表从客户端中分离,解决了ViewFS的问题。RBF架构包括Router和State Store两个模块,其中Router作为代理服务,负责解析ViewFS并转发请求至正确子集群,State Store则维护子集群的状态和挂载表信息。
【赵渝强老师】Spark Streaming中的DStream
本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
【赵渝强老师】基于ViewFS的HDFS联邦架构
本文介绍了HDFS联盟(Federation)的概念及其在大数据存储中的应用。HDFS联盟通过允许多个NameNode管理不同的命名空间,实现了负载均衡和NameNode的水平扩展。文章还详细解释了基于ViewFS的联盟架构,以及该方案的局限性。附带的视频进一步讲解了相关概念。
【赵渝强老师】Hive的体系架构
Hive是基于Hadoop的数据仓库平台,提供SQL-like的HQL语言进行数据分析,无需编写复杂的Java代码。Hive支持丰富的数据模型,可将SQL语句转换为MapReduce任务在Yarn上运行,底层依赖HDFS存储数据。Hive可通过CLI、JDBC和Web界面执行SQL查询。