PolarDB PostgreSQL 版
云原生数据库 PolarDB PostgreSQL 版是阿里云完全自主研发的云原生关系型数据库产品,100%兼容 PostgreSQL。
如何基于PolarDB-PG处理空间数据
《PolarDB for PostgreSQL动手实践》系列,带您体验基于PolarDB for PostgreSQL部署开源空间处理插件PostGIS,并执行空间查询。
高性能特性体验:ePQ 的详解与实战
PolarDB PostgreSQL 引擎提供了弹性跨机并行查询(elastic Parallel Execution)的功能,支持多个计算节点分布式地执行 SQL 查询。本实验将体验该功能。
如何一键本地部署PolarDB for PostgreSQL
《PolarDB for PostgreSQL动手实践》系列第一期,带您体验如何本地一键安装快速部署云原生开源数据库PolarDB for PostgreSQL。

沉浸式学习PostgreSQL|PolarDB 16: 植入通义千问大模型+文本向量化模型, 让数据库具备AI能力
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
沉浸式学习PostgreSQL|PolarDB 15: 企业ERP软件、网站、分析型业务场景、营销场景人群圈选, 任意字段组合条件数据筛选
本篇文章目标学习如何快速在任意字段组合条件输入搜索到满足条件的数据.
直播预告 | PolarDB-PG 企业级特性 —— Shared Server特性详解
PolarDB-PG 提供了 Shared Server 内置连接池功能,实现了用户连接与后端进程的解绑。后端进程在运行时可以根据实时负载和进程污染情况进行动态转换。负载调度算法使用 Stall 机制弹性控制 Worker 数量,同时避免用户连接饿死。从根本上解决了高并发或者大量短连接带来的性能、稳定性问题。

直播预告 | PolarDB-PG 企业级特性 —— 闪回特性详解
闪回表 (Flashback Table) 功能是PolarDB-PG数据库高可用的一个重要特性,支持在数据人为误操作时,快速闪回到某个时间点,恢复以及查看丢失的数据。本期分享将会介绍闪回表、闪回日志的基本原理以及特性,并演示闪回功能的使用方法。
沉浸式学习PostgreSQL|PolarDB 11: 物联网(IoT)、监控系统、应用日志、用户行为记录等场景 - 时序数据高吞吐存取分析
物联网场景, 通常有大量的传感器(例如水质监控、气象监测、新能源汽车上的大量传感器)不断探测最新数据并上报到数据库. 监控系统, 通常也会有采集程序不断的读取被监控指标(例如CPU、网络数据包转发、磁盘的IOPS和BW占用情况、内存的使用率等等), 同时将监控数据上报到数据库. 应用日志、用户行为日志, 也就有同样的特征, 不断产生并上报到数据库. 以上数据具有时序特征, 对数据库的关键能力要求如下: 数据高速写入 高速按时间区间读取和分析, 目的是发现异常, 分析规律. 尽量节省存储空间

沉浸式学习PostgreSQL|PolarDB 10: 社交、刑侦等业务, 关系图谱搜索
业务场景1 介绍: 社交、刑侦等业务, 关系图谱搜索 - 营销、分销、流量变现、分佣、引爆流行、裂变式传播、家谱、选课、社交、人才库、刑侦、农产品溯源、药品溯源 图式搜索是PolarDB | PostgreSQL在(包括流计算、全文检索、图式搜索、K-V存储、图像搜索、指纹搜索、空间数据、时序数据、推荐等)诸多特性中的一个。 采用CTE语法,可以很方便的实现图式搜索(N度搜索、最短路径、点、边属性等)。 其中图式搜索中的:层级深度,是否循环,路径,都是可表述的。
沉浸式学习PostgreSQL|PolarDB 9: AI大模型+向量数据库, 提升AI通用机器人在专业领域的精准度, 完美诠释柏拉图提出的“知识是回忆而不是知觉”
越来越多的企业和个人希望能够利用LLM和生成式人工智能来构建专注于其特定领域的具备AI能力的产品。目前,大语言模型在处理通用问题方面表现较好,但由于训练语料和大模型的生成限制,对于垂直专业领域,则会存在知识深度和时效性不足的问题。在信息时代,由于企业的知识库更新频率越来越高,并且企业所拥有的垂直领域知识库(例如文档、图像、音视频等)往往是未公开或不可公开的。因此,对于企业而言,如果想在大语言模型的基础上构建属于特定垂直领域的AI产品,就需要不断将自身的知识库输入到大语言模型中进行训练。
沉浸式学习PostgreSQL|PolarDB 8: 电商|短视频|新闻|内容推荐业务(根据用户行为推荐相似内容)、监控预测报警系统(基于相似指标预判告警)、音视图文多媒体相似搜索、人脸|指纹识别|比对 - 向量搜索应用
1、在电商业务中, 用户浏览商品的行为会构成一组用户在某个时间段的特征, 这个特征可以用向量来表达(多维浮点数组), 同时商品、店铺也可以用向量来表达它的特征. 那么为了提升用户的浏览体验(快速找到用户想要购买的商品), 可以根据用户向量在商品和店铺向量中进行相似度匹配搜索. 按相似度来推荐商品和店铺给用户. 2、在短视频业务中, 用户浏览视频的行为, 构成了这个用户在某个时间段的兴趣特征, 这个特征可以用向量来表达(多维浮点数组), 同时短视频也可以用向量来表达它的特征. 那么为了提升用户的观感体验(推荐他想看的视频), 可以在短视频向量中进行与用户特征向量的相似度搜索.
沉浸式学习PostgreSQL|PolarDB 7: 移动社交、多媒体、内容分发、游戏业务场景, 跨地域多机房的智能加速
在移动社交、多媒体、内容分发业务场景中, 如果用户要交互的内容都在中心网络(假设深圳), 现在用户流动非常频繁, 当用户从深圳出差到北京, 因为网络延迟急剧增加, 他的访问体验就会变得非常差. 网络延迟对游戏业务的影响则更加严重. 为了解决这个问题, 企业会将业务部署在全国各地, 不管用户在哪里出差, 他都可以就近访问最近的中心. 由于标记用户的只有IP地址, 怎么根据用户的接入IP来判断他应该访问哪个中心呢? 通过这个实验, 大家可以了解到在数据库中如何存储IP地址范围和各中心IDC的映射关系, 以及如何根据用户的来源IP(接入IP)来判断他应该去哪个中心IDC访问.
沉浸式学习PostgreSQL|PolarDB 6: 预定会议室、划分管辖区
会议室预定系统最关键的几个点: 1、查询: 按位置、会议室大小、会议室设备(是否有投屏、电话会议、视频会议...)、时间段查询符合条件的会议室. 2、预定: 并写入已订纪录. 3、强约束: 防止同一个会议室的同一个时间片出现被多人预定的情况.
沉浸式学习PostgreSQL|PolarDB 5: 零售连锁、工厂等数字化率较低场景的数据分析
零售连锁, 制作业的工厂等场景中, 普遍数字化率较低, 通常存在这些问题: 数据离线, 例如每天盘点时上传, 未实现实时汇总到数据库中. 数据格式多, 例如excel, csv, txt, 甚至纸质手抄. 让我们一起来思考一下, 如何使用较少的投入实现数据汇总分析?
沉浸式学习PostgreSQL|PolarDB 4: 跨境电商场景, 快速判断商标|品牌侵权
很多业务场景中需要判断商标侵权, 避免纠纷. 例如 电商的商品文字描述、图片描述中可能有侵权内容. 特别是跨境电商, 在一些国家侵权查处非常严厉. 注册公司名、产品名时可能侵权. 在写文章时, 文章的文字内容、视频内容、图片内容中的描述可能侵权. 例如postgresql是个商标, 如果你使用posthellogresql、postgresqlabc也可能算侵权. 以跨境电商为力, 为了避免侵权, 在发布内容时需要商品描述中出现的品牌名、产品名等是否与已有的商标库有相似. 对于跨境电商场景, 由于店铺和用户众多, 商品的修改、发布是比较高频的操作, 所以需要实现高性能的字符串相似匹配功能.
沉浸式学习PostgreSQL|PolarDB 3: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销
业务场景1 介绍: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销 在营销场景中, 通常会对用户的属性、行为等数据进行统计分析, 生成用户的标签, 也就是常说的用户画像. 标签举例: 男性、女性、年轻人、大学生、90后、司机、白领、健身达人、博士、技术达人、科技产品爱好者、2胎妈妈、老师、浙江省、15天内逛过手机电商店铺、... ... 有了用户画像, 在营销场景中一个重要的营销手段是根据条件选中目标人群, 进行精准营销. 例如圈选出包含这些标签的人群: 白领、科技产品爱好者、浙江省、技术达人、15天内逛过手机电商店铺 .
富士胶片公司完成阿里云PolarDB数据库开源产品兼容适配
近日,富士胶片(中国)投资有限公司(以下简称富士胶片)与阿里云PolarDB 开源数据库社区展开产品集成认证。测试结果表明,富士胶片旗下富医睿影与阿里云以下产品:开源云原生数据库 PolarDB PostgreSQL 版(V11),完全满足产品兼容认证要求,兼容性良好,系统运行稳定。
沉浸式学习PostgreSQL|PolarDB 2: 电商高并发秒杀业务、跨境电商高并发队列消费业务
业务场景介绍: 高并发秒杀业务 秒杀业务在电商中最为常见, 可以抽象成热点记录(行)的高并发更新. 而通常在数据库中最细粒度的锁是行锁, 所以热门商品将会被大量会话涌入, 出现锁等待, 甚至把数据库的会话占满, 导致其他请求无法获得连接产生业务故障. 业务场景介绍: 高并发队列消费业务 在跨境电商业务中可能涉及这样的场景, 由于有上下游产业链的存在, 1、用户下单后, 上下游厂商会在自己系统中生成一笔订单记录并反馈给对方, 2、在收到反馈订单后, 本地会先缓存反馈的订单记录队列, 3、然后后台再从缓存取出订单并进行处理.
沉浸式学习PostgreSQL|PolarDB 1: 短视频推荐去重、UV统计分析场景
本实验场景:短视频推荐去重、UV统计分析场景. 欢迎一起来建设数据库沉浸式学习教学素材库, 帮助开发者用好数据库, 提升开发者竞争力, 为企业降本提效. 本文的实验可以使用永久免费的云起实验室来完成. https://developer.aliyun.com/adc/scenario/exp/f55dbfac77c0467a9d3cd95ff6697a31 如果你本地有docker环境也可以把镜像拉到本地来做实验.
基于PolarDB PostgreSQL版和LLM构建企业专属Chatbot
随着ChatGPT的问世,人们开始认识到大语言模型(LLM,Large language model)和生成式人工智能在多个领域的潜力,如文稿撰写、图像生成、代码优化和信息搜索等。LLM已成为个人和企业的得力助手,并朝着超级应用的方向发展,引领着新的生态系统。本文介绍如何基于PolarDB PostgreSQL版向量数据库和LLM构建企业专属Chatbot。

云原生时代下的国产开源数据库是如何实现更多的技术创新和突破?听听他们怎么说
大咖云集,燃爆夏日。8月5日,由PostgreSQL中文社区、阿里云PolarDB开源社区、蚂蚁OceanBase开源社区联合举办的开源数据库技术沙龙在杭州召开,来自PG中文社区、阿里云PolarDB、蚂蚁集团、OceanBase等专家大咖全方位解读了国产数据库核心技术与架构、时下成熟的解决方案及最佳实践,并与高校、伙伴探讨了如何推动产教结合,加快国产数据库核心人才培养。近百位业内专家与开源技术爱好者、资深开发者们齐聚一堂,共话开源数据库技术与人才培养。
PolarDB | PostgreSQL 高并发队列处理业务的数据库性能优化实践
在电商业务中可能涉及这样的场景, 由于有上下游关系的存在, 1、用户下单后, 上下游厂商会在自己系统中生成一笔订单记录并反馈给对方, 2、在收到反馈订单后, 本地会先缓存反馈的订单记录队列, 3、然后后台再从缓存取出订单并进行处理. 如果是高并发的处理, 因为大家都按一个顺序获取, 容易产生热点, 可能遇到取出队列遇到锁冲突瓶颈、IO扫描浪费、CPU计算浪费的瓶颈. 以及在清除已处理订单后, 索引版本未及时清理导致的回表版本判断带来的IO浪费和CPU运算浪费瓶颈等. 本文将给出“队列处理业务的数据库性能优化”优化方法和demo演示. 性能提升10到20倍.

用PolarDB|PostgreSQL提升通用ai机器人在专业领域的精准度
chatgpt这类通用机器人在专业领域的回答可能不是那么精准, 原因有可能是通用机器人在专业领域的语料库学习有限, 或者是没有经过专业领域的正反馈训练. 为了提升通用机器人在专业领域的回答精准度, 可以输入更多专业领域相似内容作为prompt来提升通用ai机器人在专业领域的精准度. PolarDB | PostgreSQL 开源数据库在与openai结合的过程中起到的核心作用是: 基于向量插件的向量类型、向量索引、向量相似搜索操作符, 加速相似内容的搜索. 通过“问题和正确答案”作为参考输入, 修正openapi在专业领域的回答精准度.

PolarDB开源社区走进天津、温州高校,现场授课带领学生动手实践学
6月18日-19日,PolarDB开源社区携手生态伙伴共同走进北京科技大学天津学院、温州理工大学两所高校。PolarDB开源、研发及架构师、生态伙伴布道师们进行现场授课,带领学生进行动手实践,通过实验环境让学生领用PolarDB,通过PolarDB人才认证考试检验学习成果,让学生系统化的学习PolarDB数据库技术。
星辰天合公司产品完成阿里云PolarDB数据库产品生态集成认证
近日,XSKY星辰天合旗下产品与阿里云PolarDB 开源数据库社区展开产品集成认证。测试结果表明,星辰天合旗下的融合计算管理平台XHERE(V2)、统一数据平台XEDP(V6)、天合翔宇分布式存储系统(V6)与阿里云的开源云原生数据库 PloarDB分布式版(V2.2)以及开源云原生数据库PolarDB PostgreSQL(V11),完全满足产品兼容认证要求,兼容性良好,系统运行稳定。
莲子数据与阿里云开源PolarDB合作助力制造业数字化转型
因云而聚,携手共赢,莲子数据与众多科技公司一起成为PolarDB 开源社区的生态成员,作为PolarDB 开源数据库的生态合作企业,莲子数据库一体机结合PolarDB 的生态可以赋能广大工业企业,近期在工业数字化应用的一个实际案例就生动体现了软硬深度结合的价值。

【活动回顾】PostgreSQL中文社区 × PolarDB开源数据库技术沙龙(武汉站)圆满落幕!
6月3日,由PostgreSQL中文社区和PolarDB开源社区联合举办的数据库技术沙龙(武汉站)圆满落幕!本次活动邀请到来自阿里云、成都文武,四维纵横,拓数派,斗鱼、武汉大学等多位资深技术专家与老师,这次技术交流活动围绕未来数据库展开讨论和分享。通过探讨未来数据库的概念和特点,了解未来数据库在数据管理、智能分析、数据驱动等领域的应用和机遇,为智能化时代的发展提供更多的支持和服务。接下来让我们一起回顾活动精彩吧!

【活动报名】PolarDB开源社区&PostgreSQL中文社区线下沙龙武汉站
本次技术交流活动将围绕未来数据库展开讨论和分享。通过探讨未来数据库的概念和特点,我们将了解未来数据库在数据管理、智能分析、数据驱动等领域的应用和机遇,为智能化时代的发展提供更多的支持和服务。
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(1)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(1)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(2)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(2)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(3)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(3)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(4)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(4)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(5)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(5)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(1)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(1)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(2)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(2)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(3)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(3)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(4)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(4)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(5)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL 基础入门(5)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(1)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(1)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(2)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(2)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(3)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(3)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(4)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(4)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL高可用原理(上)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL高可用原理(上)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL高可用原理(中)
《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL高可用原理(中)