《PolarDB for PostgreSQL源码与应用实战》——PolarDB-PostgreSQL开源核心Feature介绍(3) https://developer.aliyun.com/article/1232755?groupCode=polardbforpg
全局一致性正确性证明
上面HLC的算法,我们可以证明它的正确性。
我们假设在任意一个节点如DN1上,如果有两个并发事务T1、T2,如果T2在扫描T1的修改时,T1还未prepare,那么T1对T2是不可见,因为没有prepare,也没有提交时间戳,所以直接就判断不可见了。
这样的话,T2的start_ts一定会小于T1的commit_ts,这个是因为T1在prepare阶段分布式决策的T1的commit_ts一定会大于等于DN1的prepare_ts,则大于DN1的max_ts。而T2的start_ts 在到达本节点时,一定会更新max_ts,使得 max _ts大于等于 T2的start_ts。因此,当T2扫描T 1的修改时,T 1还未进入prepared状态,则说明T 1的commit_ts一定会大于T2的start_ts。
由于commit_ts和start_ts是全局统一的,因此在任意节点,T1的commit_ts大于T2的start_ts条件都成立,根据时间戳比较判断可见性,T1的修改对T2均不可见。
如果T2在扫描T1修改时,T1处于prepared状态,T2需要等待T1的提交,或者说abort。如果abort,则不可见;如果提交,那就有commit_ts,直接时间戳比较进行可见性判断,即如果T2.start_ts >= T1.commit_ts,则可见。
如果T2在其他节点没有看到T1的prepared状态,根据上面第一点的证明,最终T1的commit_ts会大于T2的start_ts,则在本节点T2等待结束,也看不到T1的修改。因此,T2可能看到T1的修改,仅当T2在所有节点都看到了T1过了prepare阶段。
根据上面的证明总结,如果T2在某个节点扫描时未看到T1的prepared状态,T1的修改对T2不可见,最终T2.start_ts .这样如果T2.start_ts>=T1.commit_ts,则可以看到T1的修改。从而我们可以保证T2要看到T1的修改,当且仅当T2的start_ts大于或等于T1的commit_ts。
外部一致性正确性证明
另外比较关心的就是外部一致性,HLC可以保证跨session之间的快照隔离(内部一致性),以及同一个CN的强外部一致性,跨CN的弱外部一致性。
外部一致性的定义是数据库事务T1提交成功返回,此时开启的事务T2一定能够看到T1的修改,相当于T2在T1提交成功返回以后,立即可以看到T1的修改。如果T1、T2都连接到一个CN的客户端,我们就可以保证外部一致性。T1结束的时候会用T1的commit_ts更新CN的max_ts,T1返回给客户端,发起T2请求,可以是不同的客户端。T2的start_ts会大于等于T1的commit_ts,所以T2一定能看到T1的修改。
不同的CN之间有时钟偏移,此时不定能保障立马能看到,会有一定的时钟倾斜,PTP协议将一个IDC的时钟倾斜同步在1us内。客户端到CN之间的网络来回延迟远大于时钟偏移,此时就可以保证强一致性。
不同CN之间,如果我们依赖传统通用的NTP进行同步,可以保证读到小于时钟倾斜的提交事务修改。比如在CN1上刚提交了,CN2上时钟偏移可能有5毫秒,要等5毫秒才能看到它的修改。当然,从CN1上返回给客户端,让客户端知道它已经提交成功了,也会有一定的时差,所以一般场景下读不到最新提交,相对来说偏差是比较小的。
大部分场景下,跨Session要求读到前面已经提交的需求一般相对较少,大部分情况下都是在同一个Session里面的事务要求看到前面的修改,所以HLC可以保证即便是跨Session,不同的CN可以保证快照隔离,同一个CN是强外部一致性的,跨CN会有弱外部一致性,未来引入先进的 PPT协议就可以保证强外部一致性。
Remote Recovery 设计动机
接下来介绍一下另外一个性能的优化——Remote Recovery机制。
PostgreSQL会通过full page writes来解决故障时部分写入的页面,因为故障的时候页面可能会没有完全写入,在页面写入的中间就crash了。
此时,PG采用的是checkpoint后第一次修改,在WAL中写入full page,回放时,用WAL中的full page来进行回放,此时full page写的开销就会很大。
Remote Recovery 设计想法
我们有一个Remote Recovery的设计想法,就是通常情况下一个数据库节点是有多节点进行容灾,像我们这次开源的三节点,它就有两个节点进行容灾。我们可以采用Remote Recovery机制在多个副本之间进行恢复,就是一个机器节点的页面可能损坏了,但其他副本有最新的有正确页面,就会备机去读然后再进行故障恢复。
这个特性Oracle里面也有,我们的特性和它的不同点在于Oracle的是做checksum的时候发现它不一致了,就去其他节点恢复。我们还是沿用full page write的特性,在checkpoint后发现是第一次修改,就去备机读。因为checksum并不一定保证完全的正确,而我们这样的话可以保证完全的正确性。
Remote Recovery 实现
上图为Remote Recovery的原理框架图。
我们在回放的时候,发现它是checkpoint后第一次修改,我们就会从远程mirrored节点,比如备机从主机,主机从备机,或者备机从备机,可以把另外一个full page先读过来,然后再Apply。
Apply的时候跟WAL回放的原理一样,就是只有LSN大于远程页面的LSN才会回放,否则的话就直接跳过,说明在备机或远程的一个节点已经回放过了。
这里有个很核心的问题,就是何时需要去取remote full page?
在每个checkpoint后第一次修改页面时,我们不写full page,而是在WAL中写入remote fetch page bit,记录一下需要去远程读取页面。
在节点故障恢复重做时,碰到remote fetch page bit,则从mirrored节点远程fetch full page。主机写入checkpoint的时候需要等待备机同步完成,因为我们需要保证主备之间最近的一个checkpoint大家都有,因为回放都是从最近的一个checkpoint开始的,所以必须保证之前的修改在其他节点已经有了,这样我们才能保证回放正确。
这样的话,我们回放的流程跟原来的单机回放是差不多的,也就是当LSN大于page LSN才重做。如果小于,那说明在mirrored的节点已经重做过了,我们就不需要再回放,直接跳过。
还有一些不存在的页,说明它在后面已经删除掉该页了,比如说删除表空间,回收等,我们也可以简单跳过。
我们去连接mirrored节点的时候,需要判断mirrored节点回放是否过了故障恢复节点最近的一个checkpoint点。如果没有,就要等它过了这个点,保证两边最近的checkpoint点是一样的,因为恢复是从最近的checkpoint点来恢复,这样就可以保证两边是一致的。
Remote Recovery的正确性是保证两个节点之间checkpoint点是一样的,这样我们后面回放的时候就有最新的数据,无非是LSN在另外一个节点是否回放过的区别。