1.背景
欢迎数据库应用开发者参与贡献场景, 在此issue回复即可, 共同建设《沉浸式数据库学习教学素材库》, 帮助开发者用好数据库, 提升开发者职业竞争力, 同时为企业降本提效.
- 系列课程的核心目标是教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核. 所以面向的对象是数据库的用户、应用开发者、应用架构师、数据库厂商的产品经理、售前售后专家等角色.
本文的实验可以使用永久免费的阿里云云起实验室来完成.
如果你本地有docker环境也可以把镜像拉到本地来做实验:
x86_64机器使用以下docker image:
ARM机器使用以下docker image:
2.业务场景1 介绍: 企业ERP软件、网站、分析型业务场景、营销场景人群圈选, 任意字段组合条件数据筛选
在企业ERP软件、网站中经常会有一些让用户输入筛选条件(或者勾选筛选条件)的地方, 一个页面可能出现若干个选项, 每个选项用户可以进行勾选或下拉框选择.
例如淘宝网, 发货地是哪里, 商品价格范围, 商品类目, 内存大小, .... 很多选项提供选择.
分析业务场景, 经常会使用大宽表来表示对象的特征, 每个字段代表一个特征维度, 然后通过各个字段的组合条件来进行数据的统计分析.
营销场景, 和前面分析场景类似, 通过各个字段的组合条件圈选目标用户.
通常一个选项代表一个对象的某一个属性, 也就是用户可能根据任意组合条件进行筛选, 本实验主要目标是学习如何快速的在任意字段组合的条件输入下, 搜索到满足条件的数据.
2.1实现和对照
1、创建1个测试大宽表, 1个PK, 1000个字段, 500个字符串, 500个int类型.
do language plpgsql $$ declare sql text := ''; begin drop table if exists tbl; sql := 'create unlogged table tbl(id int primary key,'; for i in 1..500 loop sql := sql || 'c' || i || ' text,'; end loop; for i in 501..1000 loop sql := sql || 'c' || i || ' int,'; end loop; sql := rtrim(sql,','); sql := sql||')'; execute sql; end; $$;
2、写入测试数据 10 万条, 每个字段的值随机生成.
do language plpgsql $$ declare sql text := ''; begin sql := 'insert into tbl select generate_series(1,100000), '; for i in 1..500 loop sql := sql || 'round((random()*100)::numeric, 2)::text,' ; end loop; for i in 501..1000 loop sql := sql || '(random()*100)::int,' ; end loop; sql := rtrim(sql,','); execute sql; end; $$;
2.2传统方法 设计和实验
1、每个字段创建1个索引
do language plpgsql $$ declare sql text := ''; begin for i in 1..1000 loop sql := 'create index on tbl (c' || i || ')'; execute sql; end loop; end; $$;
vacuum analyze tbl;
2、使用任意条件筛选记录
select id from tbl where c10='11.11' and c501=1 and c700=99 and c800=80 and c900=90 and c1000=1; postgres=# explain analyze select id from tbl where c10='11.11' and c501=1 and c700=99 and c800=80 and c900=90 and c1000=1; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on tbl (cost=10.54..11.66 rows=1 width=4) (actual time=0.204..0.205 rows=0 loops=1) Recheck Cond: ((c10 = '11.11'::text) AND (c1000 = 1)) Filter: ((c501 = 1) AND (c700 = 99) AND (c800 = 80) AND (c900 = 90)) -> BitmapAnd (cost=10.54..10.54 rows=1 width=0) (actual time=0.201..0.202 rows=0 loops=1) -> Bitmap Index Scan on tbl_c10_idx (cost=0.00..1.47 rows=10 width=0) (actual time=0.017..0.018 rows=14 loops=1) Index Cond: (c10 = '11.11'::text) -> Bitmap Index Scan on tbl_c1000_idx (cost=0.00..8.82 rows=990 width=0) (actual time=0.180..0.181 rows=978 loops=1) Index Cond: (c1000 = 1) Planning Time: 23.427 ms Execution Time: 0.252 ms (10 rows)
编写测试函数, 自动生成查询语句, 第一个参数表示要查询几个字符串字段, 第二个参数表示要查询几个INT字段.
create or replace function get_uid(int, int) returns setof int as $$ declare sql text := ''; begin for i in 1..$1 loop sql := sql || 'c' || ceil(random()*500)::int || ' = ''' || round((random()*100)::numeric, 2)::text || ''' and '; end loop; for i in 1..$2 loop sql := sql || 'c' || 500 + ceil(random()*500)::int || ' = ' || (random()*100)::int || ' and '; end loop; sql := 'select id from tbl where ' || rtrim(sql, 'and '); -- raise notice '%', sql; return query execute sql; end; $$ language plpgsql strict;
-- 组合查询5个字符串字段条件, 10个int字段条件. select * from get_uid(5, 10); postgres=# select * from get_uid(5,10); NOTICE: select id from tbl where c285 = '94.00' and c176 = '21.69' and c201 = '61.58' and c248 = '82.78' and c238 = '57.56' and c611 = 53 and c929 = 78 and c531 = 11 and c780 = 53 and c590 = 88 and c996 = 21 and c549 = 1 and c801 = 44 and c748 = 42 and c918 = 46 get_uid --------- (0 rows) postgres=# select * from get_uid(5,10); NOTICE: select id from tbl where c72 = '31.83' and c6 = '61.87' and c401 = '98.84' and c311 = '37.58' and c59 = '4.44' and c782 = 18 and c609 = 17 and c581 = 64 and c896 = 38 and c986 = 91 and c967 = 88 and c898 = 92 and c640 = 47 and c899 = 14 and c935 = 44 get_uid --------- (0 rows)
3、查询性能压测
vi t1.sql select * from get_uid(5, 10);
pgbench -M prepared -n -r -P 1 -f ./t1.sql -c 10 -j 10 -T 120 transaction type: ./t1.sql scaling factor: 1 query mode: prepared number of clients: 10 number of threads: 10 duration: 120 s number of transactions actually processed: 98063 latency average = 12.235 ms latency stddev = 5.583 ms initial connection time = 21.713 ms tps = 817.238399 (without initial connection time) statement latencies in milliseconds: 12.235 select * from get_uid(5, 10);
4、表和空间占用情况
postgres=# select pg_size_pretty(pg_table_size('tbl'::regclass)); pg_size_pretty ---------------- 782 MB (1 row) postgres=# select pg_size_pretty(pg_indexes_size('tbl'::regclass)); pg_size_pretty ---------------- 812 MB (1 row)
2.2.1PolarDB|PG新方法1 设计和实验
PolarDB|PG 支持 bloom index, 在bloom index中的字段可以任意字段组合进行筛选.
先删除已有1000列的索引.
do language plpgsql $$ declare begin for i in 1..1000 loop execute 'drop index tbl_c' || i || '_idx'; end loop; end; $$;
1、创建1000列的bloom index, 每个bloom index最多只能包含32列.
https://www.postgresql.org/docs/16/bloom.html
do language plpgsql $$ declare sql text; begin execute 'create extension if not exists bloom'; for x in 1 .. (1000/32 + 1) loop if x <> (1000/32 + 1) then sql := 'create index on tbl using bloom ('; for i in ((x-1)*32+1) .. (x*32) loop sql := sql || 'c' || i || ','; end loop; sql := rtrim(sql,',') || ')'; execute sql; else sql := 'create index on tbl using bloom ('; for i in ((x-1)*32+1) .. ((x-1)*32) + mod(1000,32) loop sql := sql || 'c' || i || ','; end loop; sql := rtrim(sql,',') || ')'; execute sql; end if; end loop; end; $$;
vacuum analyze tbl;
2、使用任意条件筛选记录
select id from tbl where c10='11.11' and c501=1 and c700=99 and c800=80 and c900=90 and c1000=1; postgres=# explain analyze select id from tbl where c10='11.11' and c501=1 and c700=99 and c800=80 and c900=90 and c1000=1; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on tbl (cost=967.80..979.04 rows=1 width=4) (actual time=168.529..168.530 rows=0 loops=1) Recheck Cond: (c10 = '11.11'::text) Rows Removed by Index Recheck: 30779 Filter: ((c501 = 1) AND (c1000 = 1) AND (c700 = 99) AND (c800 = 80) AND (c900 = 90)) Rows Removed by Filter: 14 Heap Blocks: exact=30793 -> Bitmap Index Scan on tbl_c1_c2_c3_c4_c5_c6_c7_c8_c9_c10_c11_c12_c13_c14_c15_c16__idx (cost=0.00..967.80 rows=10 width=0) (actual time=16.038..16.038 rows=30793 loops=1) Index Cond: (c10 = '11.11'::text) Planning Time: 1.040 ms Execution Time: 168.615 ms (10 rows)
-- 组合查询5个字符串字段条件, 10个int字段条件. select * from get_uid(5, 10); postgres=# select * from get_uid(5,10); get_uid --------- (0 rows) Time: 4.318 ms postgres=# select * from get_uid(5,10); get_uid --------- (0 rows) Time: 198.422 ms postgres=# select * from get_uid(5,10); get_uid --------- (0 rows) Time: 5.622 ms
3、查询性能压测
vi t1.sql select * from get_uid(5, 10);
pgbench -M prepared -n -r -P 1 -f ./t1.sql -c 10 -j 10 -T 120 transaction type: ./t1.sql scaling factor: 1 query mode: prepared number of clients: 10 number of threads: 10 duration: 120 s number of transactions actually processed: 4650 latency average = 258.305 ms latency stddev = 107.361 ms initial connection time = 23.889 ms tps = 38.697368 (without initial connection time) statement latencies in milliseconds: 258.315 select * from get_uid(5, 10);
4、表和空间占用情况
postgres=# select pg_size_pretty(pg_table_size('tbl'::regclass)); pg_size_pretty ---------------- 782 MB (1 row) postgres=# select pg_size_pretty(pg_indexes_size('tbl'::regclass)); pg_size_pretty ---------------- 52 MB (1 row)
2.2.2PolarDB|PG新方法2 设计和实验
PolarDB|PG 还支持数组类型, 由于我们这个实验要的是任意字段组合筛选, 可以把所有字段的值组合起来放到一个数组里面. 查询是使用数组的包含、相交计算得到结果.
PS:
- 如果字段很长, 可以考虑使用文本组合后的hashvalue作为数组的元素.
- hashvalue []
1、创建一张新的标签表
drop table if exists tbl1; create unlogged table tbl1 ( id int primary key, tags text[] -- 用数组表示1000个字段的标签值(如果原始字段内容特别长, 可以用hashvalue表示原始值, 从而降低存储空间.). );
2、将原始1000个字段的表组合后写入到新的标签表.
do language plpgsql $$ declare sql text := 'insert into tbl1 select id, array['; begin for i in 1..1000 loop sql := sql || '''c' || i || '_'' || ' || 'c' || i || ',' ; -- 字段名_值 作为标签元素 end loop; sql := rtrim(sql, ',') || '] from tbl'; execute sql; end; $$;
postgres=# select * from tbl1 limit 1; -[ RECORD 1 ]-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- id | 1 tags | {c1_37.60,c2_84.41,c3_76.07,c4_96.78,c5_27.19,c6_78.18,c7_45.04,c8_45.72,c9_7.73,c10_18.37,c11_48.12,c12_62.91,c13_73.46,c14_37.79,c15_3.79,c16_55.38,c17_68.77,c18_35.94,c19_71.77,c20_0.94,c21_55.30,c22_15.09,c23_30.26,c24_42.45,c25_36.35,c26_28.48,c27_13.03,c28_31.33,c29_54.01,c30_90.54,c31_96.98,c32_47.14,c33_74.71,c34_93.53,c35_79.06,c36_92.60,c37_40.74,c38_15.57,c39_11.12,c40_91.00,c41_88.95,c42_94.40,c43_73.12,c44_83.46,c45_7.08,c46_9.04,c47_55.70,c48_14.95,c49_3.14,c50_39.39,c51_9.91,c52_1.65,c53_29.39,c54_19.60,c55_66.05,c56_17.97,c57_9.66,c58_24.26,c59_58.94,c60_25.86,c61_33.37,c62_12.66,c63_50.02,c64_72.93,c65_72.54,c66_44.18,c67_56.70,c68_10.01,c69_55.54,c70_80.24,c71_78.99,c72_57.40,c73_55.52,c74_21.91,c75_17.23,c76_84.85,c77_69.09,c78_38.74,c79_60.59,c80_52.37,c81_24.16,c82_18.13,c83_74.99,c84_91.11,c85_53.06,c86_75.59,c87_54.02,c88_30.04,c89_40.68,c90_86.54,c91_14.05,c92_0.25,c93_35.67,c94_28.88,c95_4.02,c96_72.56,c97_29.92,c98_11.59,c99_73.13,c100_14.34,c101_35.60,c102_35.98,c103_50.47,c104_38.60,c105_45.34,c106_19.85,c107_67.55,c108_74.99,c109_57.91,c110_66.72,c111_17.36,c112_21.40,c113_5.22,c114_87.46,c115_35.60,c116_52.42,c117_75.76,c118_64.95,c119_96.89,c120_22.94,c121_0.78,c122_75.48,c123_99.93,c124_30.99,c125_43.02,c126_57.93,c127_22.35,c128_2.51,c129_0.34,c130_12.60,c131_32.14,c132_54.56,c133_38.50,c134_57.47,c135_67.00,c136_44.46,c137_86.85,c138_10.47,c139_22.95,c140_46.56,c141_38.28,c142_68.81,c143_15.09,c144_30.42,c145_69.29,c146_40.56,c147_89.49,c148_73.24,c149_48.64,c150_43.95,c151_25.85,c152_93.73,c153_3.22,c154_23.65,c155_96.39,c156_75.81,c157_9.80,c158_64.14,c159_51.96,c160_80.48,c161_40.05,c162_82.98,c163_27.81,c164_57.60,c165_97.73,c166_13.58,c167_79.33,c168_40.64,c169_0.70,c170_90.48,c171_24.14,c172_75.43,c173_9.99,c174_10.54,c175_27.35,c176_25.21,c177_34.83,c178_91.67,c179_88.65,c180_51.24,c181_20.29,c182_95.45,c183_85.32,c184_71.06,c185_84.01,c186_29.37,c187_77.10,c188_89.29,c189_26.24,c190_36.31,c191_64.02,c192_13.59,c193_14.36,c194_99.00,c195_6.48,c196_57.40,c197_94.43,c198_1.04,c199_9.68,c200_79.27,c201_22.21,c202_58.98,c203_57.54,c204_66.13,c205_28.59,c206_63.66,c207_61.70,c208_75.12,c209_44.93,c210_88.45,c211_0.69,c212_59.30,c213_47.05,c214_56.53,c215_35.17,c216_10.17,c217_28.35,c218_31.59,c219_44.23,c220_10.84,c221_58.72,c222_54.51,c223_74.67,c224_55.09,c225_12.08,c226_93.03,c227_90.07,c228_8.72,c229_68.63,c230_78.50,c231_56.62,c232_70.63,c233_94.39,c234_51.91,c235_82.97,c236_94.70,c237_28.03,c238_35.68,c239_14.12,c240_12.86,c241_29.68,c242_43.42,c243_56.60,c244_20.45,c245_67.66,c246_71.48,c247_20.56,c248_53.80,c249_92.91,c250_16.49,c251_11.75,c252_74.90,c253_17.25,c254_94.71,c255_95.77,c256_39.67,c257_18.29,c258_13.39,c259_10.71,c260_35.76,c261_19.90,c262_50.96,c263_92.37,c264_45.87,c265_81.85,c266_33.20,c267_35.20,c268_98.80,c269_95.28,c270_62.16,c271_78.66,c272_77.73,c273_51.68,c274_34.61,c275_34.75,c276_42.58,c277_92.42,c278_20.22,c279_59.37,c280_9.13,c281_73.67,c282_5.69,c283_87.63,c284_93.38,c285_99.72,c286_21.40,c287_65.78,c288_47.18,c289_95.19,c290_78.22,c291_6.72,c292_65.46,c293_47.53,c294_54.66,c295_2.81,c296_60.69,c297_55.21,c298_92.57,c299_49.26,c300_65.05,c301_46.82,c302_12.05,c303_62.06,c304_12.45,c305_84.85,c306_25.28,c307_31.28,c308_62.96,c309_56.80,c310_72.05,c311_97.20,c312_90.81,c313_69.57,c314_76.08,c315_4.89,c316_60.47,c317_63.22,c318_17.95,c319_10.75,c320_44.96,c321_21.19,c322_73.59,c323_29.85,c324_95.67,c325_80.04,c326_92.25,c327_19.99,c328_90.12,c329_96.39,c330_99.94,c331_59.70,c332_63.63,c333_57.24,c334_55.74,c335_53.52,c336_63.41,c337_76.31,c338_52.85,c339_66.84,c340_52.45,c341_89.51,c342_14.87,c343_79.93,c344_79.86,c345_91.83,c346_61.32,c347_51.42,c348_29.58,c349_72.26,c350_5.01,c351_85.32,c352_58.64,c353_38.29,c354_45.73,c355_13.96,c356_48.01,c357_44.29,c358_68.46,c359_97.26,c360_64.19,c361_74.52,c362_66.49,c363_23.52,c364_80.23,c365_89.63,c366_46.15,c367_99.49,c368_34.49,c369_41.60,c370_36.89,c371_79.57,c372_29.55,c373_44.99,c374_9.71,c375_93.89,c376_48.77,c377_68.95,c378_85.02,c379_48.67,c380_12.65,c381_73.94,c382_96.74,c383_43.85,c384_21.41,c385_57.48,c386_37.34,c387_54.93,c388_55.51,c389_23.88,c390_76.12,c391_76.93,c392_94.78,c393_42.51,c394_62.36,c395_17.08,c396_95.15,c397_77.99,c398_62.66,c399_33.59,c400_44.40,c401_42.98,c402_56.34,c403_54.48,c404_34.15,c405_50.39,c406_20.74,c407_23.55,c408_2.44,c409_97.47,c410_75.42,c411_29.15,c412_51.66,c413_50.14,c414_44.89,c415_91.56,c416_51.93,c417_72.55,c418_18.14,c419_51.93,c420_35.04,c421_57.19,c422_82.50,c423_0.58,c424_43.31,c425_4.44,c426_41.01,c427_56.75,c428_59.71,c429_11.66,c430_67.89,c431_11.61,c432_37.53,c433_1.06,c434_45.81,c435_39.17,c436_11.12,c437_16.95,c438_70.54,c439_76.89,c440_85.26,c441_88.35,c442_11.89,c443_62.78,c444_12.44,c445_96.56,c446_20.83,c447_65.87,c448_10.62,c449_31.95,c450_59.45,c451_60.05,c452_94.49,c453_24.68,c454_66.18,c455_11.88,c456_79.59,c457_3.54,c458_20.19,c459_93.36,c460_20.00,c461_71.57,c462_27.41,c463_1.49,c464_98.28,c465_89.51,c466_61.01,c467_95.81,c468_53.58,c469_65.93,c470_70.93,c471_28.22,c472_4.13,c473_59.12,c474_52.95,c475_82.03,c476_50.77,c477_78.78,c478_85.48,c479_97.67,c480_84.56,c481_18.93,c482_3.01,c483_4.23,c484_24.73,c485_75.80,c486_54.20,c487_2.03,c488_81.63,c489_80.96,c490_69.57,c491_30.59,c492_37.76,c493_68.55,c494_42.37,c495_78.54,c496_18.97,c497_63.07,c498_63.40,c499_39.48,c500_56.01,c501_19,c502_79,c503_29,c504_18,c505_22,c506_96,c507_56,c508_1,c509_15,c510_97,c511_3,c512_51,c513_90,c514_74,c515_4,c516_26,c517_45,c518_10,c519_48,c520_26,c521_55,c522_55,c523_17,c524_59,c525_34,c526_45,c527_76,c528_71,c529_69,c530_74,c531_13,c532_27,c533_2,c534_29,c535_34,c536_41,c537_16,c538_18,c539_63,c540_35,c541_37,c542_7,c543_54,c544_69,c545_21,c546_88,c547_63,c548_21,c549_9,c550_20,c551_92,c552_22,c553_72,c554_89,c555_63,c556_78,c557_10,c558_7,c559_38,c560_31,c561_90,c562_46,c563_47,c564_12,c565_18,c566_88,c567_2,c568_17,c569_39,c570_51,c571_12,c572_48,c573_76,c574_92,c575_80,c576_49,c577_12,c578_1,c579_60,c580_97,c581_28,c582_33,c583_16,c584_29,c585_76,c586_40,c587_27,c588_52,c589_97,c590_10,c591_35,c592_6,c593_75,c594_7,c595_60,c596_76,c597_23,c598_91,c599_1,c600_3,c601_20,c602_32,c603_65,c604_12,c605_26,c606_80,c607_52,c608_55,c609_1,c610_58,c611_16,c612_44,c613_37,c614_2,c615_59,c616_28,c617_51,c618_44,c619_36,c620_11,c621_97,c622_32,c623_75,c624_20,c625_95,c626_19,c627_38,c628_95,c629_85,c630_94,c631_97,c632_25,c633_91,c634_95,c635_2,c636_52,c637_36,c638_2,c639_92,c640_78,c641_34,c642_79,c643_61,c644_11,c645_12,c646_66,c647_19,c648_70,c649_83,c650_78,c651_66,c652_13,c653_13,c654_92,c655_73,c656_96,c657_93,c658_13,c659_57,c660_8,c661_35,c662_13,c663_47,c664_47,c665_3,c666_33,c667_96,c668_97,c669_78,c670_47,c671_62,c672_43,c673_45,c674_45,c675_66,c676_66,c677_90,c678_45,c679_12,c680_74,c681_94,c682_33,c683_56,c684_1,c685_48,c686_10,c687_31,c688_95,c689_57,c690_33,c691_90,c692_78,c693_5,c694_76,c695_67,c696_4,c697_38,c698_3,c699_21,c700_54,c701_40,c702_42,c703_95,c704_97,c705_92,c706_24,c707_86,c708_75,c709_69,c710_81,c711_9,c712_16,c713_94,c714_55,c715_95,c716_3,c717_58,c718_32,c719_65,c720_61,c721_81,c722_55,c723_48,c724_18,c725_61,c726_64,c727_16,c728_54,c729_68,c730_3,c731_76,c732_47,c733_98,c734_28,c735_84,c736_15,c737_7,c738_93,c739_66,c740_74,c741_51,c742_74,c743_28,c744_54,c745_5,c746_80,c747_28,c748_33,c749_5,c750_64,c751_45,c752_16,c753_58,c754_31,c755_8,c756_13,c757_12,c758_63,c759_45,c760_97,c761_5,c762_87,c763_46,c764_88,c765_16,c766_68,c767_28,c768_1,c769_95,c770_6,c771_55,c772_76,c773_75,c774_74,c775_6,c776_49,c777_8,c778_34,c779_41,c780_36,c781_64,c782_71,c783_80,c784_56,c785_62,c786_87,c787_83,c788_22,c789_33,c790_3,c791_70,c792_6,c793_5,c794_59,c795_65,c796_16,c797_21,c798_50,c799_32,c800_97,c801_47,c802_52,c803_85,c804_55,c805_84,c806_74,c807_26,c808_24,c809_60,c810_36,c811_65,c812_29,c813_27,c814_88,c815_19,c816_9,c817_48,c818_57,c819_67,c820_70,c821_46,c822_19,c823_1,c824_27,c825_60,c826_100,c827_29,c828_52,c829_5,c830_20,c831_57,c832_91,c833_14,c834_62,c835_58,c836_78,c837_94,c838_51,c839_27,c840_14,c841_24,c842_59,c843_60,c844_99,c845_71,c846_96,c847_97,c848_91,c849_57,c850_73,c851_28,c852_12,c853_20,c854_82,c855_3,c856_96,c857_37,c858_72,c859_7,c860_39,c861_4,c862_5,c863_39,c864_39,c865_80,c866_4,c867_98,c868_6,c869_86,c870_6,c871_61,c872_60,c873_85,c874_99,c875_16,c876_83,c877_10,c878_7,c879_98,c880_11,c881_33,c882_80,c883_82,c884_3,c885_37,c886_64,c887_13,c888_17,c889_19,c890_64,c891_1,c892_96,c893_6,c894_84,c895_43,c896_72,c897_6,c898_27,c899_9,c900_45,c901_100,c902_58,c903_45,c904_91,c905_70,c906_94,c907_34,c908_11,c909_16,c910_16,c911_58,c912_91,c913_38,c914_22,c915_99,c916_31,c917_68,c918_72,c919_83,c920_61,c921_82,c922_5,c923_6,c924_43,c925_35,c926_27,c927_92,c928_30,c929_68,c930_100,c931_0,c932_69,c933_63,c934_34,c935_49,c936_49,c937_51,c938_61,c939_23,c940_31,c941_29,c942_63,c943_90,c944_31,c945_90,c946_42,c947_7,c948_49,c949_16,c950_10,c951_81,c952_29,c953_77,c954_25,c955_15,c956_53,c957_57,c958_94,c959_36,c960_74,c961_62,c962_88,c963_20,c964_90,c965_10,c966_18,c967_81,c968_0,c969_65,c970_79,c971_83,c972_95,c973_31,c974_60,c975_47,c976_75,c977_95,c978_54,c979_18,c980_82,c981_75,c982_16,c983_19,c984_33,c985_48,c986_82,c987_26,c988_74,c989_72,c990_1,c991_87,c992_28,c993_19,c994_34,c995_48,c996_98,c997_38,c998_88,c999_13,c1000_98}
3、在数组字段上创建倒排索引: gin index
create index on tbl1 using gin (tags); vacuum analyze tbl1;
4、创建任意字段搜索查询函数, 模拟数组包含查询
create or replace function get_uid1(int, int) returns setof int as $$ declare sql text := 'array['; begin for i in 1..$1 loop sql := sql || '''c' || ceil(random()*500)::int || '_' || round((random()*100)::numeric, 2)::text || ''','; end loop; for i in 1..$2 loop sql := sql || '''c' || 500 + ceil(random()*500)::int || '_' || (random()*100)::int || ''','; end loop; sql := 'select id from tbl1 where tags @> ' || rtrim(sql, ',') || ']'; -- raise notice '%', sql; return query execute sql; end; $$ language plpgsql strict;
-- 组合查询5个字符串字段条件, 10个int字段条件. select * from get_uid1(5, 10); postgres=# select * from get_uid1(5, 10); NOTICE: select id from tbl1 where tags @> array['c153_68.20','c336_2.45','c400_50.07','c197_48.06','c182_90.43','c960_36','c925_75','c525_53','c611_73','c828_21','c896_16','c864_1','c659_97','c666_86','c639_78'] get_uid1 ---------- (0 rows) Time: 4.368 ms postgres=# select * from get_uid1(5, 10); NOTICE: select id from tbl1 where tags @> array['c465_24.84','c500_92.92','c135_35.36','c61_63.15','c438_13.23','c969_96','c996_27','c602_5','c535_22','c720_10','c616_40','c619_28','c511_23','c856_77','c538_73'] get_uid1 ---------- (0 rows) Time: 4.324 ms postgres=# explain analyze select id from tbl1 where tags @> array['c153_68.20','c336_2.45','c400_50.07','c197_48.06','c182_90.43','c960_36','c925_75','c525_53','c611_73','c828_21','c896_16','c864_1','c659_97','c666_86','c639_78']; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on tbl1 (cost=83.60..84.71 rows=1 width=4) (actual time=0.863..0.865 rows=0 loops=1) Recheck Cond: (tags @> '{c153_68.20,c336_2.45,c400_50.07,c197_48.06,c182_90.43,c960_36,c925_75,c525_53,c611_73,c828_21,c896_16,c864_1,c659_97,c666_86,c639_78}'::text[]) -> Bitmap Index Scan on tbl1_tags_idx (cost=0.00..83.60 rows=1 width=0) (actual time=0.856..0.857 rows=0 loops=1) Index Cond: (tags @> '{c153_68.20,c336_2.45,c400_50.07,c197_48.06,c182_90.43,c960_36,c925_75,c525_53,c611_73,c828_21,c896_16,c864_1,c659_97,c666_86,c639_78}'::text[]) Planning Time: 0.340 ms Execution Time: 0.948 ms (6 rows)
5、查询性能压测
vi t3.sql select * from get_uid1(5, 10);
pgbench -M prepared -n -r -P 1 -f ./t3.sql -c 10 -j 10 -T 120 transaction type: ./t3.sql scaling factor: 1 query mode: prepared number of clients: 10 number of threads: 10 duration: 120 s number of transactions actually processed: 3078754 latency average = 0.390 ms latency stddev = 0.165 ms initial connection time = 24.890 ms tps = 25661.456683 (without initial connection time) statement latencies in milliseconds: 0.390 select * from get_uid1(5, 10);
6、表和空间占用情况
postgres=# select pg_size_pretty(pg_table_size('tbl1'::regclass)); pg_size_pretty ---------------- 795 MB (1 row) postgres=# select pg_size_pretty(pg_indexes_size('tbl1'::regclass)); pg_size_pretty ---------------- 564 MB (1 row)
2.2.3PolarDB|PG新方法3 设计和实验
在传统方法中针对任意字段组合过滤的场景, 使用了1000列全部都建上索引的方法来加速, 但是实际上在圈选或者分析场景中, 筛选的记录数是非常庞大的, IO消耗非凸显出来. 同时1000列索引还会带来写入降速严重的问题.
为了解决这个问题, PolarDB|PG 可以通过 duckdb_fdw 来支持parquet列存储, 带来的好处是存储压缩比例高节省空间、列向量计算提升查询性能、不需要创建索引不影响高速导入.
1、将数据库中的数据先导出到csv文件中, 准备转换为parquet文件.
su - postgres cd ~ copy tbl to '/var/lib/postgresql/db1.csv' with (format csv , header true);
2、在duckdb中创建表
vi ddl.sql do language plpgsql $$ declare sql text := ''; begin sql := 'create table tbl(id int primary key,'; for i in 1..500 loop sql := sql || 'c' || i || ' text,'; end loop; for i in 501..1000 loop sql := sql || 'c' || i || ' int,'; end loop; sql := rtrim(sql,','); sql := sql || ');' ; raise notice '%', sql; end; $$; psql -f ddl.sql 2>&1 | grep NOTICE | awk -F 'NOTICE:' '{print $2}' | ./duckdb /var/lib/postgresql/db1.duckdb
3、将csv文件转换到parquet列存储格式, 并创建查询视图
./duckdb /var/lib/postgresql/db1.duckdb D insert into tbl select * from '/var/lib/postgresql/db1.csv'; D copy tbl to '/var/lib/postgresql/db1.parquet' (FORMAT PARQUET); D create view v_tbl as SELECT * FROM read_parquet('/var/lib/postgresql/db1.parquet'); D select count(*) from v_tbl; ┌──────────────┐ │ count_star() │ │ int64 │ ├──────────────┤ │ 100000 │ └──────────────┘
4、在PolarDB|PG中, 创建duckdb_fdw插件, 并将duckdb中的表作为外部表查询.
create extension if not exists duckdb_fdw; CREATE SERVER DuckDB_server FOREIGN DATA WRAPPER duckdb_fdw OPTIONS (database '/var/lib/postgresql/db1.duckdb'); create schema duckdb; IMPORT FOREIGN SCHEMA public FROM SERVER DuckDB_server INTO duckdb; postgres=# \det duckdb.* List of foreign tables Schema | Table | Server --------+-------+--------------- duckdb | tbl | duckdb_server duckdb | v_tbl | duckdb_server (2 rows) postgres=# select count(*) from duckdb.v_tbl; count -------- 100000 (1 row) Time: 20.730 ms postgres=# explain verbose select count(*) from duckdb.v_tbl; QUERY PLAN ------------------------------------------------ Foreign Scan (cost=1.00..1.00 rows=1 width=8) Output: (count(*)) SQLite query: SELECT count(*) FROM v_tbl (3 rows) Time: 7.842 ms
5、创建查询duckdb parquet的压测函数. 压测方法与前面的类似, 若干个字符串字段, 若干个整型字段.
create or replace function get_uid2(int, int) returns setof int8 as $$ declare sql text := ''; begin for i in 1..$1 loop sql := sql || 'c' || ceil(random()*500)::int || ' = ''' || round((random()*100)::numeric, 2)::text || ''' and '; end loop; for i in 1..$2 loop sql := sql || 'c' || 500 + ceil(random()*500)::int || ' = ' || (random()*100)::int || ' and '; end loop; sql := 'select id from duckdb.v_tbl where ' || rtrim(sql, 'and '); -- raise notice '%', sql; return query execute sql; end; $$ language plpgsql strict;
-- 组合查询5个字符串字段条件, 10个int字段条件. select * from get_uid2(5, 10); postgres=# select * from get_uid2(5, 10); NOTICE: select id from duckdb.v_tbl where c386 = '92.82' and c370 = '3.55' and c110 = '33.45' and c60 = '10.28' and c184 = '39.87' and c520 = 5 and c662 = 71 and c586 = 14 and c777 = 68 and c617 = 25 and c843 = 95 and c611 = 79 and c775 = 48 and c598 = 92 and c899 = 74 get_uid2 ---------- (0 rows) Time: 47.058 ms postgres=# select * from get_uid2(5, 10); NOTICE: select id from duckdb.v_tbl where c100 = '93.50' and c62 = '91.11' and c441 = '72.54' and c6 = '50.63' and c349 = '65.93' and c925 = 29 and c959 = 44 and c518 = 79 and c781 = 78 and c649 = 46 and c961 = 16 and c857 = 17 and c664 = 73 and c950 = 56 and c811 = 4 get_uid2 ---------- (0 rows) Time: 47.597 ms
6、查询性能压测
vi t4.sql select * from get_uid2(5, 10);
pgbench -M prepared -n -r -P 1 -f ./t4.sql -c 1 -j 1 -T 120 transaction type: ./t4.sql scaling factor: 1 query mode: prepared number of clients: 1 number of threads: 1 duration: 120 s number of transactions actually processed: 9003 latency average = 13.329 ms latency stddev = 1.255 ms initial connection time = 8.840 ms tps = 75.021592 (without initial connection time) statement latencies in milliseconds: 13.329 select * from get_uid2(5, 10);
7、表和空间占用情况
postgres@abaf67f643b7:~$ ll /var/lib/postgresql/db1.parquet -rw-r--r-- 1 postgres postgres 262M Sep 8 09:07 /var/lib/postgresql/db1.parquet
2.2.4对照
10万数据量, 1000字段, 任意组合搜索.
方法 | 单次15个组合条件请求响应速度 (毫秒) | 处理吞吐 tps | 表占有空间 | 索引占有空间 |
传统方法1000字段 + 1000 btree索引 | 12.235 | 817 | 782 MB | 812 MB |
PolarDB|PG bloom 索引 | 258.315 | 39 | 782 MB | 52 MB |
PolarDB|PG 数组 + gin索引 | 0.390 | 25661 | 795 MB | 564 MB |
PolarDB|PG + duckdb parquet 列存储 + 无索引 | 13.329 | 75 | 262 MB | 0 |
3.知识点
1 hashvalue
2 bloom index
3 array
4 gin index
5 向量特征, 向量距离, 向量索引?
6 bitmap index scan
4.思考
1 本实验提到的都是等值或不等于的查询要求, 如果有范围查询怎么办? 阶梯化? 转化为有限空间内的值? 最终还是模拟等值查询!!!
2 向量特征?
4 列存储?
5 为什么会选择多个索引使用bitmap index方法?
6 and查询用数组怎么表达? @>
postgres=# \do+ @> List of operators Schema | Name | Left arg type | Right arg type | Result type | Function | Description ------------+------+---------------+----------------+-------------+--------------------------------+------------- pg_catalog | @> | anyarray | anyarray | boolean | arraycontains | contains
7 or查询在数组中如何表达? &&
postgres=# \do+ && List of operators Schema | Name | Left arg type | Right arg type | Result type | Function | Description ------------+------+---------------+----------------+-------------+--------------------------------+---------------------------------- pg_catalog | && | anyarray | anyarray | boolean | arrayoverlap | overlaps
8 如果原始字段内容特别长, 可以用hashvalue表示原始值, 从而降低存储空间.
9 duckdb_fdw 的duckdb server只能打开1次, 不能多个连接同时打开, 未来可能有改进空间. 否则每次初始化duckdb非常麻烦. 留个作业, 有兴趣的同学可以改进duckdb_fdw, 例如以RO模式同时打开, 或者支持更方便的克隆功能?
5.参考
- 《使用 PolarDB 开源版 bloom filter index 实现任意字段组合条件过滤》
- 《重新发现PostgreSQL之美 - 14 bloom 布隆过滤器索引》
- 《PostgreSQL 应用开发解决方案最佳实践系列课程 - 7. 标签搜索和圈选、相似搜索和圈选、任意字段组合搜索和圈选系统》
- 《PostgreSQL 14 preview - BRIN (典型IoT 时序场景) 块级索引支持 bloom filter - 随机,大量distinct value, 等值查询》
- 《PostgreSQL bloom 索引原理》
- 《PostgreSQL 任意字段组合搜索 - rum 或 多字段 bitmapscan 对比》
- 《PostgreSQL+MySQL 联合解决方案 - 第10课视频 - 任意字段、维度组合搜索(含GIS、数组、全文检索等属性)》
- 《UID编码优化 - 用户画像前置规则 (bloom, 固定算法等)》
- 《PostgreSQL 任意字段组合查询 - 含128字段,1亿记录,任意组合查询,性能》
- 《PostgreSQL bloom filter index 扩展 for bigint》
- 《PostgreSQL 任意字段数组合 AND\OR 条件,指定返回结果条数,构造测试数据算法举例》
- 《PostgreSQL 设计优化case - 大宽表任意字段组合查询索引如何选择(btree, gin, rum) - (含单个索引列数超过32列的方法)》
- 《PostgreSQL ADHoc(任意字段组合)查询(rums索引加速) - 非字典化,普通、数组等组合字段生成新数组》
- 《PostgreSQL 实践 - 实时广告位推荐 2 (任意字段组合、任意维度组合搜索、输出TOP-K)》
- 《PostgreSQL 实践 - 实时广告位推荐 1 (任意字段组合、任意维度组合搜索、输出TOP-K)》
- 《PostgreSQL 11 preview - bloom filter 误报率评估测试及如何降低误报 - 暨bloom filter应用于HEAP与INDEX的一致性检测》
- 《PostgreSQL 11 preview - BRIN索引接口功能扩展(BLOOM FILTER、min max分段)》
- 《PostgreSQL ADHoc(任意字段组合)查询 与 字典化 (rum索引加速) - 实践与方案1 - 菜鸟 某仿真系统》
- 《PostgreSQL 如何高效解决 按任意字段分词检索的问题 - case 1》
- 《PostgreSQL 9.6 黑科技 bloom 算法索引,一个索引支撑任意列组合查询》
- 《PolarDB-PG | PostgreSQL + duckdb_fdw + 阿里云OSS 实现高效低价的海量数据冷热存储分离》
- 《PolarDB 开源版通过 duckdb_fdw 支持 parquet 列存数据文件以及高效OLAP》
- 《用duckdb_fdw加速PostgreSQL分析计算, 提速40倍, 真香.》
- 《PostgreSQL 牛逼的分析型功能 - 列存储、向量计算 FDW - DuckDB_fdw - 无数据库服务式本地lib库+本地存储》