数据仓库
阿里云自主研发的云原生数据仓库,具有高并发读写、低峰谷读写、弹性扩展、安全可靠等特性,可支持PB级别数据存储,可广泛应用于BI、机器学习、实时分析、数据挖掘等场景。包含AnalyticDB MySQL版、AnalyticDB PostgreSQL 版。

ADB Supabase在Coding Agent下的集成和应用
云原生数据仓库 ADB PostgreSQL 全托管 Supabase 服务,彻底打通AI原生应用的快速落地通路。本次分享将重点介绍 ADB Supabase 核心能力,并通过实战演示,带您学习如何使用 MCP Server 实现全栈 Agent 自主开发,以及如何结合 Bolt 和 Qwen3-Coder 大模型,快速构建 Web、APP 和小程序等多样化应用。免费开通指南:https://help.aliyun.com/zh/analyticdb/analyticdb-for-postgresql/user-guide/supabase/
免费试用|Vibe Coding正当时,AnalyticDB Supabase极速开发爆款应用
云原生数据仓库AnalyticDB PostgreSQL版重磅推出Supabase托管版本
一键搞定本土认证难题,AnalyticDB版Supabase助力AI应用实现支付宝&微信登录
阿里云AnalyticDB PostgreSQL版推出全新第三方身份认证能力,原生支持微信、支付宝、GitHub、Google、Apple等主流平台登录,助力开发者快速构建本土化用户系统。相比传统开发方式,无需从零开发认证模块,5分钟即可完成集成,大幅降低开发成本。适用于AI应用、创业项目及企业级智能应用,提升用户增长效率,实现安全、便捷的身份管理。
ClickHouse不止于快:它在AI领域悄悄做了这些大事!
在第16届中国数据库技术大会(DTCC2025)大会上,ClickHouse Inc技术总监王鹏程,根据自己和团队在ClickHouse的技术实践经历,发表了题为《ClickHouse在AI领域的进展和应用》的主题演讲,分享了ClickHouse在现代数据架构中的创新应用,特别是在向量搜索、智能代理分析、机器学习数据管理等关键领域的突破。本文由ITPUB整理,经王鹏程老师授权发布。以下为演讲实录。

湖仓一体:小米集团基于 Apache Doris + Apache Paimon 实现 6 倍性能飞跃
小米通过将 Apache Doris(数据库)与 Apache Paimon(数据湖)深度融合,不仅解决了数据湖分析的性能瓶颈,更实现了 “1+1>2” 的协同效应。在这些实践下,小米在湖仓数据分析场景下获得了可观的业务收益。
2-5 倍性能提升,30% 成本降低,阿里云 SelectDB 存算分离架构助力波司登集团实现降本增效
波司登集团升级大数据架构,采用阿里云数据库 SelectDB 版,实现资源隔离与弹性扩缩容,查询性能提升 2-5 倍,总体成本降低 30% 以上,效率提升 30%,助力销售旺季高效运营。
Apache Doris 实时更新技术揭秘:为何在 OLAP 领域表现卓越?
Apache Doris 为何在 OLAP 领域表现卓越?凭借其主键模型、数据延迟、查询性能、并发处理、易用性等多方面特性的表现,在分析领域展现了独特的实时更新能力。

浩瀚深度:从 ClickHouse 到 Doris, 支撑单表 13PB、534 万亿行的超大规模数据分析场景
浩瀚深度旗下企业级大数据平台选择 Apache Doris 作为核心数据库解决方案,目前已在全国范围内十余个生产环境中稳步运行,其中最大规模集群部署于 117 个高性能服务器节点,单表原始数据量超 13PB,行数突破 534 万亿,日均导入数据约 145TB,节假日峰值达 158TB,是目前已知国内最大单表。
网易云信 x Doris:降本70%、提速11倍, 统一 ES/InfluxDB/Hive 多技术栈的落地实践
网易云信引入 Apache Doris 统一了原有 Elasticsearch、InfluxDB 和 Hive 多技术栈系统。凭借其高性能和易扩展的特点,提供一站式的数据存储和分析服务。实现机器成本降低 70%、实时场景查询提速 11 倍、离线任务耗时缩短 80% 的显著收益。
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。

十亿 JSON 秒级响应:Apache Doris vs ClickHouse,Elasticsearch,PostgreSQL
JSONBench 是一个为 JSON 数据而生的数据分析 Benchmark,在默认设置下,Doris 的性能表现是 Elasticsearch 的 2 倍,是 PostgreSQL 的 80 倍。调优后,Doris 查询整体耗时降低了 74%,对比原榜单第一的 ClickHouse 产品实现了 39% 的领先优势。本文详细描述了调优思路与 Doris 调优前后的性能表现,欢迎阅读了解~
解锁数仓内AI流水线,AnalyticDB Ray基于多模ETL+ML提效开发与运维
AnalyticDB Ray 是AnalyticDB MySQL 推出的全托管Ray服务,基于开源 Ray 的丰富生态,经过多模态处理、具身智能、搜索推荐、金融风控等场景的锤炼,对Ray内核和服务能力进行了全栈增强。
海量数据分页查询效率低?一文解析阿里云AnalyticDB深分页优化方案
本文介绍了AnalyticDB(简称ADB)针对深分页问题的优化方案。深分页是指从海量数据中获取靠后页码的数据,常导致性能下降。ADB通过快照缓存技术解决此问题:首次查询生成结果集快照并缓存,后续分页请求直接读取缓存数据。该方案在数据导出、全量结果分页展示及业务报表并发控制等场景下表现出色。测试结果显示,相比普通分页查询,开启深分页优化后查询RT提升102倍,CPU使用率显著降低,峰值内存减少至原方案的几分之一。实际应用中,某互联网金融客户典型慢查询从30秒优化至0.5秒,性能提升60+倍。
6/14 上海,Apache Doris x 阿里云 SelectDB AI 主题线下 Meetup 正式开启报名!
6 月 14 日,由 Apache Doris 社区、飞轮科技、阿里云联合发起的湖仓数智融合、AI 洞见未来:Apache Doris x 阿里云 SelectDB 联合 Meetup 将在上海·汇付天下总部大楼正式开启,邀您一同探索 AI 与数据分析的融合实践!
4年10亿美金,Neon用Serverless PG证明:AI需要的不是“大”,而是“隐形”
AnalyticDB PostgreSQL 版基于Neon架构隆重推出满足 AI 时代应用开发需求的Serverless版本,并且在这之上搭载了结构化分析、向量检索、BM25全文检索和图检索,通过一套引擎满足 AI 应用丰富的数据诉求,支持MCP和OpenAI协议,为企业全面拥抱 AI 配备了数据存储、分析和应用的 “关键” 能力,帮助企业火箭式启动跑赢时代。

阿里云 SelectDB 实现日志高效存储与实时分析
阿里云 SelectDB 是由阿里云与飞轮科技合作,基于 Apache Doris 研发的新一代云原生实时数据仓库,聚焦于满足企业级大数据分析需求,广泛应用于实时报表分析、即席多维分析、日志检索分析、湖仓一体分析等场景,致力于为客户提供极致性能、简单易用的数据分析服务。 本方案基于阿里云 SelectDB 构建高性能、低成本、开放的日志存储与分析解决方案,覆盖运维监控、安全审计、业务分析等场景,并通过倒排索引与分级存储实现数据亚秒级检索。在同样的资源下,本方案写入性能达 Elasticsearch 的 5 倍,存储空间占用仅需 Elasticsearch 的 1/4,性价比总体提升 5 倍。
光云科技 X AnalyticDB:构建 AI 时代下的云原生企业级数仓
AnalyticDB承载了光云海量数据的实时在线分析,为各个业务线的商家提供了丝滑的数据服务,实时物化视图、租户资源隔离、冷热分离等企业级特性,很好的解决了SaaS场景下的业务痛点,也平衡了成本。同时也基于通义+AnalyticDB研发了企业级智能客服、智能导购等行业解决方案,借助大模型和云计算为商家赋能。

网易游戏 x Apache Doris:湖仓一体架构演进之路
网易游戏 Apache Doris 集群超 20 个 ,总节点数百个,已对接内部 200+ 项目,日均查询量超过 1500 万,总存储数据量 PB 级别。
体验AnalyticDB无感集成(Zero-ETL)下的一站式数据分析,完成任务可领取300社区积分兑换各种商城好礼!
瑶池数据库的无感数据集成实现秒级同步,性能提升15%。借助AnalyticDB的Zero-ETL功能,快速搭建OLTP与OLAP同步链路,一站式管理数据分析。参与活动完成任务即可领取300社区积分,还有机会抽取红酒收纳箱、键盘鼠标垫、福禄寿淘公仔等好礼!

Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
秉承“以场景驱动创新” 的核心理念,持续深耕三大核心场景的关键能力,并对大模型 GenAI 场景的融合应用进行重点投入,为智能时代构建实时、高效、统一的数据底座。

拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
拉卡拉早期基于 Lambda 架构构建数据系统面临存储成本高、实时写入性能差、复杂查询耗时久、组件维护复杂等问题。为此,拉卡拉选择使用 Apache Doris 替换 Elasticsearch、Hive、Hbase、TiDB、Oracle / MySQL 等组件,实现了 OLAP 引擎的统一、查询性能提升 15 倍、资源减少 52% 的显著成效。
Navicat for Snowflake 震撼首发,激活数据仓库管理全新动能
近日,Navicat 家族迎来了一位全新成员 — Navicat for Snowflake。Snowflake 是一款基于云架构的现代数据仓库解决方案,以其弹性扩展、高性能和易用性著称。这次首发的Navicat for Snowflake 专为简化 Snowflake 数据库管理任务而精心打造。它凭借其直观、用户友好的界面,赋予用户在 Snowflake 环境中轻松管理、开发与分析数据的能力,极大提升了数据库操作的便捷性与高效性。
StarRocks 存算分离在京东物流的落地实践
本文分享了京东物流在StarRocks存算分离架构上的实践与成果。通过将UData平台从存算一体升级为存算分离,显著提升了查询性能和资源利用率,同时大幅降低了存储成本(90%)和计算资源成本(30%)。文章详细介绍了存算分离的背景、部署方案、性能表现及优化措施,包括联邦查询、实时写入、Compaction调优等关键技术点。未来,京东物流将持续推动存算分离的应用拓展,并探索更多降本增效策略,如Stream Load任务合并与主动缓存管理。

为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
本文将从技术选型的视角,从开放性、系统架构、实时写入、实时存储、实时查询等多方面,深入分析 Apache Doris 与 Elasticsearch 的能力差异及性能表现

MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。

SelectDB 实时分析性能突出,宝舵成本锐减与性能显著提升的双赢之旅
BOCDOP 宝舵早期基于 TiDB 构建实时数仓,随着数据量增长,在数据处理效率、OLAP 能力扩展、功能支持、成本与资源方面存在一定优化空间。**为提升数据分析能力并优化成本,宝舵引入 [SelectDB](https://www.selectdb.com/?utm_source=selectdbwechat&utm_medium=1&utm_campaign=post),达成写入速度提升 10 倍,成本直降 30% 的显著成效。

从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。

数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率

数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
湖仓一体架构融合了数据湖的低成本、高扩展性,以及数据仓库的高性能、强数据治理能力,高效应对大数据时代的挑战。为助力企业实现湖仓一体的建设,Apache Doris 提出了数据无界和湖仓无界核心理念,并结合自身特性,助力企业加速从 0 到 1 构建湖仓体系,降低转型过程中的风险和成本。本文将对湖仓一体演进及 Apache Doris 湖仓一体方案进行介绍。

从 ClickHouse 到 Apache Doris:在网易云音乐日增万亿日志数据场景下的落地
日志数据已成为企业洞察系统状态、监控网络安全及分析业务动态的宝贵资源。网易云音乐引入 Apache Doris 作为日志库新方案,替换了 ClickHouse。解决了 ClickHouse 运维复杂、不支持倒排索引的问题。目前已经稳定运行 3 个季度,规模达到 50 台服务器, 倒排索引将全文检索性能提升7倍,2PB 数据,每天新增日志量超过万亿条,峰值写入吞吐 6GB/s 。

湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
Apache Doris 2.1.8 版本正式发布
该版本持续在湖仓一体、异步物化视图、查询优化器与执行引擎、存储管理等方面进行改进提升与问题修复,进一步加强系统的性能和稳定性,欢迎大家下载体验。

金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
中信银行信用卡中心每日新增日志数据 140 亿条(80TB),全量归档日志量超 40PB,早期基于 Elasticsearch 构建的日志云平台,面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此使用 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。

阿里云瑶池助力华鼎冷链科技:零ETL畅享高性能数据生态
为解决自建TiDB带来的运维难题和高昂成本,华鼎采用阿里云PolarDB MySQL与AnalyticDB MySQL,通过Zero-ETL实现数据无感集成,大幅降低成本、提升性能和效率,并实现了异地灾备、秒级查询和BI分析等功能,助力业务快速发展。

计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
灵犀科技早期基于 Hadoop 构建大数据平台,在战略调整和需求的持续扩增下,数据处理效率、查询性能、资源成本问题随之出现。为此,引入 [Apache Doris](https://doris.apache.org/) 替换了复杂技术栈,升级为集存储、加工、服务为一体的统一架构,实现存储成本下降 60%,计算效率提升超 10 倍的显著成效。

Apache Doris 创始人:何为“现代化”的数据仓库?
3.0 版本是 Apache Doris 研发路程中的重要里程碑,他将这一进展总结为“实时之路”、“统一之路”和“弹性之路”,详细介绍了所对应的核心特性的设计思考与应用价值,揭晓了 2025 年社区发展蓝图

一文了解多云原生的现代化实时数仓 SelectDB Cloud
现代多云原生实时数据仓库 SelectDB Cloud,充分利用云原生能力,为客户提供极致性价比、融合统一、简单易用、安全稳定的云上数据分析服务。
Apache Doris 3.0.3 版本正式发布
亲爱的社区小伙伴们,Apache Doris 3.0.3 版本已于 2024 年 12 月 02 日正式发布。该版本进一步提升了系统的性能及稳定性,欢迎大家下载体验。

某全球领先网络解决方案提供商:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 的改造实践
某全球领先网络解决方案提供商早期架构面临架构复杂、数据冗余存储、运维困难、资源利用率低、数据时效性差等问题。因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎,显著提升了查询性能及系统稳定性,同时实现资源成本降低 30%。
客户说|宝宝树选用AnalyticDB RAG引擎,共创智能母婴生活新范式
宝宝树与阿里云深度合作,利用大数据和AI技术,推出了一系列智能化产品,如AI解读B超单、AI起名等,覆盖备孕、孕期、产后等场景,提升了用户体验,推动了商业化进程。通过技术架构的优化,宝宝树在内容生产和搜索精度上取得了显著成效,未来将继续深化“AI+母婴”战略,为用户提供更全面、个性化的服务。
智能调度、秒级弹性|一文带你探索Compaction Service的进化之路
ADB MySQL的Compaction Service功能通过将Compaction任务从存储节点解耦至独立的弹性资源池执行,解决了资源隔离性弱、并发度低等问题,实现了资源消耗降低50%,任务执行时间平均减少40%,并支持按量付费,提升了系统的稳定性和成本效益。