sql数据库优点,SQL数据库的优点包
SQL数据库优点概述:结构化数据存储,保证一致性和完整性;支持事务处理、数据安全机制;擅长大规模数据处理,标准化查询语言,具良好可移植性;灵活定制,支持多用户并发;具备备份恢复机制,适合数据分析和报表;拥有成熟生态系统和工具支持,广泛应用于各类场景。
Greenplum闭源?平滑迁移到 AnalyticDB 开启Data+AI新范式
知名开源 MPP 数据库 Greenplum 由于其丰富的企业级特性和出色的数据处理能力成为很多企业构建数仓的首选。近期 GP 公开 Github 仓库无法访问仅保留只读归档代码,业界纷纷猜测 GP 即将闭源。云原生数仓 AnalyticDB PostgreSQL 版完全掌控内核代码,完全兼容GP语法,全自研计算及存储引擎较比开源GP有五倍性能提升,全自研企业级特性在实时计算、弹性扩展、安全增强、高可用等方面实现对GP的全面超越,并在数仓能力上扩展了向量检索及一站式 RAG 服务,帮助企业快速构建 AI 应用、开启 Data+AI 新范式。
阿里云618创新加速季数据库分会场全攻略
2024年阿里云618创新加速季活动已开启,数据库分会场推出多重优惠。RDS MySQL低至1折,部分产品享超值首购优惠,三个月仅需1折,续费也有折扣。此外,每天10点还有限时秒杀活动,云产品低至6.5折。新用户在新人专区购买指定规格可享首年折扣,还有数据库上云组合购优惠和开发者动手实践奖励。企业用户可申请5亿算力补贴,加速数字化转型。更多活动详情和优惠信息,可访问官方活动页面了解。
Apache Doris 2.0.11 版本正式发布
Apache Doris 2.0.11 版本已于 2024 年 6 月 5 日正式与大家见面,该版本提交了 123 个改进项以及问题修复,进一步提升了系统的性能及稳定性,欢迎大家下载体验。

毫秒级查询性能优化实践!基于阿里云数据库 SelectDB 版内核:Apache Doris 在极越汽车数字化运营和营销方向的解决方案
毫秒级查询性能优化实践!基于阿里云数据库 SelectDB 版内核:Apache Doris 在极越汽车数字化运营和营销方向的解决方案

数据库性能优化方向的三大类别
【6月更文挑战第6天】本文介绍了数据库优化策略,包括集中式数据库的反规范化设计(如增加冗余列、派生列、重组合表、水平和垂直分表)和数据一致性保障;这些方法旨在提升性能、确保数据安全和适应大规模数据场景。
618大促数据流量高峰来袭,你的核心业务做好容灾措施了吗?
一年一度的618大促销即将到来,在核心业务高峰期间,电商平台将迎来巨大的访问量与交易压力,保证在线交易业务的高可用,是大促支撑系统的重中之重。为了确保企业的核心业务在这个关键时刻平滑运行,避免潜在的数据丢失风险,企业需要实施一个稳健的容灾计划。阿里云数据传输服务DTS+云数据库RDS备库强强联合,能够搭建核心业务数据的容灾链路,保证核心交易业务数据的高可用,最大化确保618期间核心业务的顺畅和数据的安全,让企业能够安心迎接商业高峰所带来的挑战。
基于多线程的方式优化 FLink 程序
这篇内容介绍了线程的基本概念和重要性。线程是程序执行的最小单位,比进程更细粒度,常用于提高程序响应性和性能。多线程可以实现并发处理,利用多核处理器,实现资源共享和复杂逻辑。文章还讨论了线程的五种状态(NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED)以及如何在Java中创建和停止线程。最后提到了两种停止线程的方法:使用标识和中断机制。
怎么通过第三方库实现标准库`database/sql`的驱动注入?
在Go语言中,数据库驱动通过注入`database/sql`标准库实现,允许统一接口操作不同数据库。本文聚焦于`github.com/go-sql-driver/mysql`如何实现MySQL驱动。`database/sql`提供通用接口和驱动注册机制,全局变量管理驱动注册,`Register`函数负责添加驱动,而MySQL驱动在`init`函数中注册自身。通过这个机制,开发者能以一致的方式处理多种数据库。

PowerMock:静态方法与私有方法测试
PowerMock是Java单元测试中扩展Mockito的框架,允许模拟静态方法、构造函数、私有方法和final类,以增强测试隔离和覆盖率。主要应用场景包括静态方法模拟、私有方法测试和构造函数/Final类模拟。然而,使用时需注意配置复杂性、避免过度使用、精确控制模拟行为和遵循最佳实践。示例展示了如何模拟静态方法,通过添加PowerMock依赖和使用PowerMockito.mockStatic进行静态方法的模拟和验证。正确使用PowerMock能提升测试质量,但应谨慎以保持代码可读性和测试有效性。
Go 中空结构有什么用法
在 Go 语言中,空结构体 struct{} 是一个非常特殊的类型,它不包含任何字段并且不占用任何内存空间。虽然听起来似乎没什么用,但空结构体在 Go 编程中实际上有着广泛的应用。本文将详细探讨空结构体的几种典型用法,并解释为何它们在特定场景下非常有用。
MySQL并发事务是怎么处理的?
这篇内容探讨了数据库并发事务处理,特别是MySQL中的策略。文章指出并发编程常面临安全性和一致性的挑战,Java使用synchronized和Lock等机制,而MySQL通过事务隔离和MVCC(多版本并发控制)来解决。MVCC允许读事务无需等待写事务,通过保存数据的多个版本来避免冲突,提高并发性能。文章还分析了并发事务的三种情况,并解释了MVCC如何通过Read View选择可见数据版本。最后总结了事务隔离级别对并发处理的影响以及MVCC的关键作用。
现代化实时数仓 SelectDB 再次登顶 ClickBench 全球数据库分析性能排行榜!
近日,在 ClickHouse 发起的分析型数据库性能测试排行榜 ClickBench(https://benchmark.clickhouse.com/)中,现代化实时数仓 SelectDB 时隔两年后再次登顶,在全部近百款数据库和数十种机型中,性能表现位居总榜第一!
StarRocks进阶
【6月更文挑战第1天】StarRocks支持四种表类型:明细表、聚合表、更新表(正被主键表取代)和主键表。建表后类型不可修改,排序键需先于其他列定义,不支持BITMAP和HLL类型。主键表具有唯一非空约束的主键,适合实时更新和高效查询。明细表用于追加新数据,不支持修改。聚合表用于聚合统计,排序键需唯一。表引擎默认为OLAP,也可连接到外部数据源如MySQL、Hive等。数据类型包括数值、字符串、日期和半结构化类型如JSON。此外,还支持多种函数、DDL操作和HTTP SQL API。
PolarDB助力欧派家居核心系统去O上云,每秒处理万次事务
欧派家居选择阿里云PolarDB-PG数据库,因其顺应云趋势,提供稳定服务,提升扩容和运维效率。欧派运维负责人表示,PolarDB-PG云上运行优于自建Oracle,云运维响应更快,解决问题效率更高。
长事务管理不再难:Saga模式全面解析
本文介绍了分布式事务中的Saga模式,它用于解决微服务架构下的事务管理问题。Saga通过一系列本地事务和补偿操作确保最终一致性,分为编排和协同两种模式。文章重点讲解了编排模式,其中 Saga 协调者负责事务的执行和失败后的补偿。Saga 模式适用于业务流程明确且需要严格补偿的场景,能有效管理长事务,但实现上可能增加复杂性,并存在一致性延迟。文章还讨论了其优缺点和适用场景,强调了在面对分布式事务挑战时,Saga 模式的价值和潜力。

应对数据库不断膨胀的数据:缓存和队列中间件
【6月更文挑战第5天】该文探讨了优化数据库使用以提升应用系统性能的策略。文中建议利用Redis缓存和MQ消息队列作为辅助工具,以进一步优化性能和减少资源消耗。

数据库读写分离后的数据同步方式
【6月更文挑战第5天】该文介绍了应对大并发请求的数据库解决方案,主要涉及MySQL的主从同步和读写分离。根据业务对数据一致性和延迟的容忍度选择合适模式,读写分离则能进一步优化数据库负载。
Flask 实战:实现增改及分页查询的完整 Demo
使用 Flask 搭建的 RESTful API Demo,包含增、改用户信息和分页查询功能。利用 Flask-SQLAlchemy 处理数据库操作。环境准备:安装 Flask 和 Flask-SQLAlchemy。核心代码展示用户模型、增加用户、分页查询和更新用户信息的路由。注意点包括数据库配置、错误处理、JSON 数据处理、幂等性、安全性和编码问题。提供完整源码下载链接。
Flask Web开发基础:数据库与ORM实战
该文介绍了如何使用 Flask、SQLAlchemy 和 SQLite 实现数据库操作。首先,通过创建虚拟环境和安装 flask-sqlalchemy(版本2.5.1)及 sqlalchemy(版本1.4.47)来设置环境。接着,配置数据库URI,定义User和Movie模型类表示数据库表,并通过db.create_all()创建表。文章还展示了如何插入、查询、更新和删除记录,强调了db.session.commit()在保存更改中的关键作用。查询涉及filter、order_by等方法,提供了一系列示例。
MySQL 迁移至 SQLite 问题记录
将WPF项目从MySQL迁移到SQLite以简化部署流程。涉及更换Nuget包(Microsoft.Data.Sqlite.Core或System.Data.SQLite),修改SQL语法,如主键和唯一约束的声明,以及处理数据库连接和数据类型差异。SQLite不支持MySQL的truncate语句,需用delete并清理sqlite_sequence表。还需注意逻辑操作符&&需替换为and。更多细节在文中详述。
如何用TCC方案轻松实现分布式事务一致性
TCC(Try-Confirm-Cancel)是一种分布式事务解决方案,将事务拆分为尝试、确认和取消三步,确保在分布式系统中实现操作的原子性。它旨在处理分布式环境中的数据一致性问题,通过预检查和资源预留来降低失败风险。TCC方案具有高可靠性和灵活性,但也增加了系统复杂性并可能导致性能影响。它需要为每个服务实现Try、Confirm和Cancel接口,并在回滚时确保资源正确释放。虽然有挑战,TCC在复杂的分布式系统中仍被广泛应用。

浅谈分布式数据库系统
【6月更文挑战第4天】该文探讨了数据库管理系统的解决方案,建议使用Redis和MQ作为缓存和中转,减轻数据库压力。分布式系统需透明处理数据位置,解决查询执行和正确性问题。了解这些底层设计有助于应对性能挑战。
Java内存模型是什么
本文介绍了Java并发编程中重要的Java内存模型(JMM),该模型基于硬件内存模型,旨在解决CPU缓存一致性与处理器重排序问题,确保多线程环境下的原子性、可见性和有序性。文章首先讲解了CPU执行过程中的高速缓存和由此引发的缓存一致性问题,以及处理器的重排序现象。接着,引入了计算机内存模型,它是处理这些问题的操作规范。随后,阐述了Java内存模型,其规定了变量存储在主存,线程有自己的工作区,通过主存实现线程间通信,从而在Java层面保证内存一致性。最后,对比了JMM和计算机内存模型的异同,强调两者作用于不同层次的内存一致性保障。
为什么Mybatis Mapper不需要实现类?
在学习Java动态代理之前,我想让大家先思考这样几个问题。 • JDK动态代理为什么不能对类进行代理? • Mybatis Mapper接口为什么不需要实现类? 如果你还不知道上述问题的答案,那么这篇文章一定能消除你心中的疑惑。
Mybatis mapper动态代理解决方案
该文介绍了Mybatis中使用Mapper接口的方式代替XML配置执行SQL。Mapper接口规范包括:namespace与接口类路径相同,select ID与接口方法名一致,parameterType和方法参数类型匹配,resultType与返回值类型一致。实现过程中,需配置Mapper.xml,编写Mapper.java接口,并在Mybatis-config.xml中设置。测试类中,通过SqlSession的getMapper方法获取接口的动态代理对象,调用方法执行SQL。

通过实例理解数据库性能优化的方向
【6月更文挑战第3天】性能优化是提升用户体验的关键,尤其是对数据库的优化。慢速数据库可能导致页面加载延迟,造成用户流失。通过组合优化,可确保数据库高效运行,支持应用程序顺畅,提供无缝用户体验。
不引入ES,如何利用MySQL实现模糊匹配
本文介绍了实现一个公司申请审批流程的业务场景,该流程涉及商务角色申请添加公司,然后由管理员审批。为了防止添加重复的公司,管理员在审批前需检查已有公司信息。核心思路是通过分词、匹配数据库中的数据并按匹配度排序。在技术选型上,由于系统规模小,选择了使用MySQL的正则匹配功能而非引入ES,以降低复杂性。实现过程中,首先对输入的公司名称进行预处理,移除无用信息如地名等,然后使用IKAnalyzer进行分词,最后通过正则表达式在数据库中进行模糊匹配并按匹配度排序。代码示例展示了如何处理公司名称、分词和执行模糊匹配的SQL查询。
MySQL的 where 1=1会不会影响性能?
在MySQL动态SQL中,使用`where 1=1`主要目的是简化动态条件的拼接,有人担心这可能影响性能。然而,通过官方文档和实际测试发现,由于MySQL的Constant-Folding Optimization(常量折叠优化),`where 1=1`在大多数情况下会被优化掉,对性能影响微乎其微。MyBatis提供了`<where>`标签,能更有效地处理动态SQL,避免多余的`AND`或`OR`。当MySQL版本大于等于5.7时,两者性能差异不大,选择哪种方式可根据团队规范和个人喜好。而在旧版本中,如果使用MyBatis,推荐使用`<where>`标签。
【树 - 平衡二叉树(AVL)】F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量
【树 - 平衡二叉树(AVL)】F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量

使用mysql数据库的binlog应对故障
【6月更文挑战第1天】本文介绍`mysql的 binlog`工具用于解析MySQL的二进制日志,转换为可执行的SQL语句,主要用于数据库主从复制和增量恢复。定期备份和binlog推送能实现故障时的数据恢复。

聊聊性能,如何合理设置索引?
【6月更文挑战第1天】本文介绍了数据库索引过多的索引会使更新表的速度变慢,增大数据库体积和维护成本。索引过多的风险包括降低增删改操作性能、增大数据库体积、增加存储压力和维护开销,以及加大SQL Server优化开销。建议的核心表索引不超过7个,普通表不超过5个,小型表不超过3个。针对索引过多的问题,文章提出需要根据实际需求进行分析并提供解决方案。

基于阿里云数据库 SelectDB 内核 Apache Doris 的实时/离线一体化架构,赋能中国联通 5G 全连接工厂解决方案
数据是 5G 全连接工厂的核心要素,为支持全方位的数据收集、存储、分析等工作的高效进行,联通 5G 全连接工厂从典型的 Lambda 架构演进为 All in [Apache Doris](https://c.d4t.cn/vwDf8R) 的实时/离线一体化架构,并凭借 Doris 联邦查询能力打造统一查询网关,数据处理及查询链路大幅简化,为联通 5G 全连接工厂带来数据时效性、查询响应、存储成本、开发效率全方位的提升。
图解 Git
文件内容并没有真正存储在索引(.git/index)或者提交对象中,而是以blob的形式分别存储在数据库中(.git/objects),并用SHA-1值来校验。 索引文件用识别码列出相关的blob文件以及别的数据。对于提交来说,以树(tree)的形式存储,同样用对于的哈希值识别。树对应着工作目录中的文件夹,树中包含的 树或者blob对象对应着相应的子目录和文件。每次提交都存储下它的上一级树的识别码。 如果用detached HEAD提交,那么最后一次提交会被the reflog for HEAD引用。但是过一段时间就失效,最终被回收,与git commit --amend或者git rebas

现代化实时数仓 SelectDB 再次登顶 ClickBench 全球数据库分析性能排行榜!
现代化实时数仓 SelectDB 在时隔两年后再次完成登顶,在全部近百款数据库和数十种机型中,性能位居总榜第一!
如何巧用索引优化SQL语句性能?
在 MySQL 中,添加合适的索引可以显著提升慢查询的速度,因为索引加快了数据检索。要优化 SQL 性能,首先需定位慢查询,可通过查看执行时间和执行计划。`EXPLAIN` 命令用于查看执行计划,分析如`type`(全表扫描最慢,索引扫描较快)、`key`(未使用索引为NULL)等字段。例如,全表扫描的查询可考虑为慢查询,并创建相应索引进行优化。此外,注意聚簇索引、索引覆盖和最左前缀原则等索引使用技巧,以提高查询效率。启用慢查询日志并设置阈值,有助于识别已运行的慢查询。
为什么Netty要造FastThreadLocal?
Netty 的 FastThreadLocal 是一种高效的线程局部变量,设计用于解决标准 ThreadLocal 的性能和内存泄漏问题。FastThreadLocal 通过使用数组而非哈希表存储数据,避免了哈希冲突带来的性能损耗,查询效率达到 O(1)。此外,FastThreadLocal 提供了 remove() 方法和 FastThreadLocalRunnable 类,以防止内存泄漏,确保在执行完成后自动清理对象。相比于 ThreadLocal,FastThreadLocal 具有更高的性能和安全性。
MySQL in 太慢的 3 种优化方案
MySQL中的`eq_range_index_dive_limit`参数默认值为200,影响了IN查询的执行方式。当IN列表项少于这个值时,MySQL会使用扫描索引树(精确成本计算),而多于此值则使用索引统计(快速但可能不准)来分析查询成本。大量IN值可能导致性能下降。解决方案包括:1) 分批查询;2) 使用UNION ALL创建内存临时表;3) 创建实体表存储IN值并进行JOIN操作。注意,实体表需及时清理并避免反复插入删除导致性能下降。
盘点6个SQL小技巧
这篇内容介绍了数据库查询中的各种JOIN操作,包括内联接(inner join)、左外联接(left outer join)、右外联接(right outer join)和全联接(full outer join)。其中,LEFT JOIN可以用于替换NOT EXISTS和NOT IN的查询。接着,文章展示了如何查询每个类别中的最高分记录,以及如何利用GROUP BY和LIMIT获取每个类别中的前N个记录。此外,还提到了MySQL 8引入的新语法LATERAL JOIN,用于更方便地处理这类问题。最后,文章提到了如何高效地统计不同时间范围内的数据量以及对比两个表之间的数据差异。
SQL DB - 关系型数据库是如何工作的
• 绿:O(1)或者叫常数阶复杂度,保持为常数(要不人家就不会叫常数阶复杂度了)。 • 红:O(log(n))对数阶复杂度,即使在十亿级数据量时也很低。 • 粉:最糟糕的复杂度是 O(n^2),平方阶复杂度,运算数快速膨胀。 • 黑和蓝:另外两种复杂度(的运算数也是)快速增长。 如果要处理2000条元素: • O(1) 算法会消耗 1 次运算 • O(log(n)) 算法会消耗 7 次运算 • O(n) 算法会消耗 2000 次运算

StarRocks简介
【5月更文挑战第4天】StarRocks是Linux基金会的开源MPP数据库,提供MySQL协议兼容性,支持标准SQL,用于快速数据分析。它适用于OLAP、实时数仓、高并发查询等场景,具有无外部依赖、高可用和易运维的特点。StarRocks支持多种BI工具,如Tableau,且可构建各种数据模型。其系统架构包括Frontend(FE)和Backend(BE),提供存算一体和存算分离两种模式。此外,StarRocks支持四种表类型和多种数据类型,满足不同业务需求。

数据库
数据库领域前沿技术分享与交流