MoR vs MoE架构对比:更少参数、更快推理的大模型新选择
本文将深入分析递归混合(MoR)与专家混合(MoE)两种架构在大语言模型中的技术特性差异,探讨各自的适用场景和实现机制,并从架构设计、参数效率、推理性能等多个维度进行全面对比。
三种常见网站结构的解析方式对比—信息结构与处理路径图谱
页面结构对信息提取方式有重要影响,本文分析三种主流结构类型及应对策略,结合代码实例对比静态页面、动态页面与接口型页面的处理方法,帮助开发者快速选择合适方案,提升数据采集效率。
我与阿里云ODPS的故事:从挑战到掌控
本文讲述了作者在使用阿里云ODPS过程中的亲身经历,从最初面对大数据处理的困境,到通过ODPS及其核心组件MaxCompute、DataWorks实现数据处理与开发效率的大幅提升。不仅展现了技术带来的变革,也体现了个人从挑战到掌控的成长历程。
DGMR压缩技术:让大规模视觉Transformer模型体积减半而性能不减
本研究提出多样性引导MLP缩减(DGMR)方法,针对大型视觉Transformer模型中的冗余参数问题,通过基于Gram-Schmidt的剪枝策略,系统性地移除MLP模块中的冗余神经元,同时保持权重多样性,从而在知识蒸馏中实现高效性能恢复。实验表明,该方法可在保持性能几乎无损的前提下,减少超过57%的模型参数与计算量,在EVA-CLIP-E模型上更实现71.5%的参数缩减率,显著提升模型压缩效率。
1688商品详情API响应数据解析
1688商品详情API支持获取商品基础信息、价格、库存、图片及商家数据,适用于选品分析与市场研究。提供标准化JSON数据格式,提升电商数据采集效率。需配置商品ID等参数,示例代码展示Python调用方式。
GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
天猫商品详情API接口技术解析与Python实现
天猫商品详情API(tmall.item_get)是天猫开放平台的核心接口,通过商品ID可获取标题、价格、库存、图片、SKU及评价等完整信息。支持HTTP请求与JSON返回格式,适用于电商数据分析、竞品监控与价格策略优化等场景。本文提供Python调用示例,包含签名生成与异常处理,便于快速集成与应用。
数据 + 模型 驱动 AI Native 应用发展
随着人工智能技术的飞速发展,从生成式人工智能(GenAI)到自主代理人工智能(Agentic AI)的演进,企业面临着构建 AI Native 应用的机遇与挑战。本文将深入探讨 AI 开发模式的转变、企业应用的挑战以及技术架构和开发工具的应用,旨在为读者提供一个全面的视角,以理解如何利用数据和模型驱动 AI Native 应用的发展。
Java 17 及以上版本核心特性在现代开发实践中的深度应用与高效实践方法 Java 开发实践
本项目以“学生成绩管理系统”为例,深入实践Java 17+核心特性与现代开发技术。采用Spring Boot 3.1、WebFlux、R2DBC等构建响应式应用,结合Record类、模式匹配、Stream优化等新特性提升代码质量。涵盖容器化部署(Docker)、自动化测试、性能优化及安全加固,全面展示Java最新技术在实际项目中的应用,助力开发者掌握现代化Java开发方法。
时空API实测:区域人群客流画像数据快速获取
市场调研无需繁琐查找客流数据,通过API接口快速获取人群画像与客流统计信息。支持自由选择区域、时间季度及人群类型,返回包括年龄、性别、职业、消费偏好等多维数据。
ViTAR:模糊位置编码让视觉Transformer适配任意分辨率图像
ViTAR代表了视觉Transformer技术的重要进步,特别是在处理多样化和高分辨率图像数据的应用场景中表现出显著优势。
强化学习算法基准测试:6种算法在多智能体环境中的表现实测
本文系统研究了多智能体强化学习的算法性能与评估框架,选用井字棋和连珠四子作为基准环境,对比分析Q-learning、蒙特卡洛、Sarsa等表格方法在对抗场景中的表现。实验表明,表格方法在小规模状态空间(如井字棋)中可有效学习策略,但在大规模状态空间(如连珠四子)中因泛化能力不足而失效,揭示了向函数逼近技术演进的必要性。研究构建了标准化评估流程,明确了不同算法的适用边界,为理解强化学习的可扩展性问题提供了实证支持与理论参考。
1688图片搜索API详解
1688图片搜索接口通过上传图片实现相似商品匹配,适用于电商比价、商品溯源。支持按图搜同款或相似商品,返回商品ID、标题、价格等信息,并可设置分页、排序与筛选参数。核心参数包括图片URL/Base64(imgid)、搜索模式(search_type)及排序方式(sort_type)。
大数据信息SEO优化系统软件
大数据信息SEO优化系统软件(V1.0)是公司基于“驱动企业价值持续增长”战略,针对企业网站、电商平台及内容营销场景深度定制的智能化搜索引擎优化解决方案。该软件以“提升搜索排名、精准引流获客”为核心目标,通过整合全网数据采集、智能关键词挖掘、内容质量分析、外链健康度监测等功能模块,为企业构建从数据洞察到策略落地的全链路SEO优化体系,助力品牌高效提升搜索引擎曝光度,实现从流量获取到商业转化的价值升级。
淘宝API系列:淘宝商品优惠信息API接口详解
本文介绍了如何通过淘宝开放平台调用商品优惠券API接口,包含注册开发者账号、创建应用、使用item_search_coupon接口查询优惠券信息及数据字段说明。提供Python请求示例,适用于电商促销管理与用户优惠策略实现。
基于LSTM自编码器与KMeans聚类的时间序列无监督异常检测方法
本文提出的基于LSTM自编码器和KMeans聚类的组合方法,通过整合深度学习的序列建模能力与无监督聚类的模式分组优势,实现了对时间序列数据中异常模式的有效检测,且无需依赖标注的异常样本进行监督学习。
深入研究:淘宝店铺所有商品API接口详解
淘宝店铺商品API接口(item_search_shop)用于获取指定店铺内所有商品信息,包括商品ID、名称、价格、库存、描述、图片URL等。开发者可通过必填参数shop_id及可选参数(如page、sort、category_id等)实现分页查询、排序和分类筛选功能。响应数据包含状态码、消息、商品总数及详细列表,适用于电商平台与第三方应用展示店铺商品场景。
淘宝天猫图片搜索商品接口(附代码示例)
拍立淘图片搜索接口支持开发者通过上传图片或提供图片URL,在淘宝、天猫平台搜索相似商品,适用于商品识别、比价等场景。接口采用POST(上传图片)或GET(图片URL)请求方式,返回JSON格式数据,包含商品ID、标题、价格、卖家信息、销量及图片URL等详情,参数可指定搜索关键词、类目、结果数量等,默认返回20条。
OpenFold2.0 基于NPU的推理适配与测试
本教程详细介绍了 OpenFold 的环境搭建、代码部署、依赖安装、数据集准备及推理测试全流程。首先通过 Anaconda 创建 Python3.9 环境并配置相关库,接着克隆 OpenFold 代码仓库并安装必要依赖(如 PyTorch、dllogger、hhsuite 等)。随后准备 PDB 数据集与模型参数,调整脚本路径以适配运行环境。最后执行推理脚本完成测试,并针对常见报错提供了解决方案,例如更新 NumPy、SciPy 或调整 GPU 配置等,确保流程顺利运行。
深入研究:亚马逊amazon商品详情API接口Python攻略
亚马逊商品详情API(Product Advertising API)让开发者以编程方式获取亚马逊商品信息,如标题、价格、库存、评价等。功能涵盖商品基本信息、购买属性、用户反馈、分类与促销信息。使用时需选择端点(如ItemLookup或ItemSearch)、构建请求、发送至服务器并处理响应数据(JSON/XML格式),同时做好错误处理。适合电商应用开发与数据分析。
体育动画直播怎么做出来的?揭秘从数据到卡通的魔法过程!
体育动画直播是一种结合实时数据、游戏引擎与AI技术的创新形式,可将真实比赛数据转化为动画呈现。它支持自由视角观看、100%还原比赛细节,适用于足球/篮球可视化直播、电竞虚拟形象直播等场景。制作流程包括数据采集(如球员定位、生物力学数据)、3D建模(创建虚拟球场与球员模型)、动画生成(关键帧或AI驱动动作)及实时渲染播出。开发者需注意数据清洗、性能优化与版权问题,未来还将融入元宇宙技术,带来全息、VR沉浸式体验。这是一场体育与科技的完美碰撞!
2025 版大学四年学好 Java 并成功拿到 offer 的技术选型与环境搭建全攻略
这篇指南为大一新生提供了系统化的Java学习路线,涵盖环境搭建、核心技术实战与项目经验。首先推荐使用IntelliJ IDEA和OpenJDK 21,掌握函数式编程、异常处理及虚拟线程等关键技能。其次通过图书馆管理系统项目实践MVC架构,结合Spring Boot与H2数据库巩固知识。规划建议从基础语法到集合框架逐步深入,并参与开源项目提升能力。配套在线课程与技术社区资源助力高效学习,助你在大学四年打下坚实基础,顺利拿到offer。
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
让回归模型不再被异常值"带跑偏",MSE和Cauchy损失函数在噪声数据环境下的实战对比
本文探讨了MSE与Cauchy损失函数在线性回归中的表现,特别是在含噪声数据环境下的差异。研究发现,MSE虽具良好数学性质,但对异常值敏感;而Cauchy通过其对数惩罚机制降低异常值影响,展现出更强稳定性。实验结果表明,Cauchy损失函数在处理含噪声数据时参数估计更接近真实值,为实际应用提供了更鲁棒的选择。
电商API调用工具全解析
电商API是电商平台提供的接口,供第三方开发者调用以实现数据交互。主要功能包括商品推广、订单处理、数据分析和客户服务等,可获取商品、订单、库存、用户、物流及评价等多类数据。通过电商API,开发者能方便地访问平台资源,构建个性化应用和服务,提升用户体验与经营效率。相关调用工具可帮助开发者更高效地整合和利用这些数据。
校招 Java 面试常见知识点及实战案例全解析
本文全面解析了Java校招面试中的常见知识点,涵盖Java新特性(如Lambda表达式、、Optional类)、集合框架高级应用(线程安全集合、Map性能优化)、多线程与并发编程(线程池配置)、JVM性能调优(内存溢出排查、垃圾回收器选择)、Spring与微服务实战(Spring Boot自动配置)、数据库与ORM框架(MyBatis高级用法、索引优化)、分布式系统(分布式事务、缓存应用)、性能优化(接口优化、高并发限流)、单元测试与代码质量(JUnit 5、Mockito、JaCoCo)以及项目实战案例(电商秒杀系统、社交消息推送)。资源地址: [https://pan.quark.cn/s
为什么大厂面试官都在问XGBoost?
作为机器学习面试的必考题,XGBoost为什么如此重要?本文用通俗易懂的方式,带你掌握XGBoost的核心知识点,让你在面试中侃侃而谈,轻松拿下offer!
京东商品详情 API 接口全攻略:从入门到精通
京东商品详情API接口是京东开放平台为开发者提供的服务,用于获取商品详细信息。通过调用接口,开发者可获得商品属性、价格、库存、促销信息等数据,适用于电商应用、价格比较工具及数据分析平台等场景。支持GET/POST请求方式,参数包括API版本、密钥等。示例代码展示了如何使用Python的requests库调用该接口,并获取JSON格式的返回数据,包含商品基本信息、价格、库存和用户评价等内容。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。