1688API最新指南:商品详情接口接入与应用
本指南介绍1688商品详情接口的接入与应用,该接口可获取商品标题、价格、规格、库存等详细信息,适用于电商平台开发、数据分析等场景。接口通过商品唯一标识查询,支持HTTP GET/POST请求,返回JSON格式数据,助力开发者高效利用1688海量商品资源。
谁是AI搜索先锋? Elastic先锋者招募令正式启动!
阿里云 x Elastic 携手推出“Elastic Pioneer”先锋者计划,开发者们可以通过贡献内容获取积分,赢取月度和年度奖励,包括 ElasticON 新加坡站门票及与技术大咖交流机会。
深入探究小红书笔记详情页面数据采集接口
小红书作为当下热门的内容分享平台,涵盖时尚、美妆、旅游等领域,其笔记详情页数据对品牌方和市场研究者具有重要意义。通过数据采集接口,可获取标题、评论、点赞等信息,用于竞品分析、内容营销效果评估及趋势预测。例如,企业可通过分析用户兴趣优化产品策略,研究新兴消费趋势指导市场推广。文中还提供了Python请求示例,帮助开发者快速上手使用API接口。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
GoT:基于思维链的语义-空间推理框架为视觉生成注入思维能力
本文探讨GoT框架如何通过语义-空间思维链方法提升图像生成的精确性与一致性。GoT(Generative Thoughts of Thinking)是一种创新架构,将显式推理机制引入图像生成与编辑领域。它通过语义推理分解文本提示,空间推理分配精确坐标,实现类人的场景构思过程。结合大型语言模型和扩散模型,GoT在复杂场景生成中表现出色,克服传统模型局限。其专用数据集包含900万样本,支持深度推理训练。技术架构融合语义-空间指导模块,确保生成图像高质量。GoT为图像生成与编辑带来技术革新,广泛应用于内容创作与教育工具开发等领域。
强化学习:实践理解Markov决策过程(MDP)(干中学系列)——手把手教你入门强化学习(三)
本博客以实践为主,带领读者巩固上期关于“Markov决策过程”的核心概念。通过构建学生马尔可夫奖励模型、计算收获值与状态价值,进一步验证贝尔曼方程。详细介绍了转移概率、奖励值及策略概率的设置,并实现了均匀随机策略下的状态价值计算与最优策略的价值评估。结合代码实例,帮助读者深入理解强化学习理论。适合初学者实践与进阶学习。
Chain of Draft: 借鉴人类草稿思维让大型语言模型更快地思考
本研究探讨了大型语言模型(LLMs)在复杂推理任务中的计算资源消耗与响应延迟问题,特别是思维链(CoT)提示范式的效率局限性。为解决这一问题,研究引入了Chain of Draft (CoD) 方法论,通过生成简洁、高信息密度的中间输出,模拟人类认知过程。CoD将每步限制在五个单词以内,减少冗余表达,显著降低token消耗和计算成本,同时保持或提升推理准确性。实验结果显示,CoD在多种推理任务中表现出色,大幅减少了token使用量(仅为CoT的7.6%),缩短了响应时间,提升了LLM在实际应用中的效率与实用性。
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
1688 快递费用 API 接口的技术剖析与应用
1688快递费用API接口为企业和开发者提供自动化、高效化的快递费用查询服务,打破人工查询的繁琐局面。通过输入寄件与收件地址、商品重量、体积及选择快递公司等信息,接口精准计算费用并返回结果,支持中通、圆通等主流快递。输出内容包括快递费用、预估时效及附加费说明,助力电商精细化运营。Python示例代码展示了如何使用requests库发起POST请求并解析响应数据,实现费用查询自动化。
13个专题6万字详解,Hologres一体化实时湖仓实践手册
Hologres 3.0 全新升级为一体化实时湖仓平台,通过统一数据平台实现湖仓存储一体、多模式计算一体、分析服务一体、Data+Al 一体,发布全新 Dynamic Table、External Database、分时弹性、Query Queue、NL2SQL 等能力,实现一份数据、一份计算、一份服务,极大提高数据开发及应用效率。
淘宝拍立淘图片搜索API接口指南(淘宝API系列)
淘宝拍立淘图片搜索API为电商应用提供强大的技术支持,允许用户通过上传图片查找相似商品。开发者需在淘宝开放平台注册并获取权限,使用HTTP POST请求上传图片数据,返回商品列表信息如标题、价格等。该接口有助于提高购物效率和市场分析。示例代码展示了如何用Python调用此API,包括参数设置、签名生成和请求发送。
Featurewiz-Polars:基于XGBoost的高性能特征选择框架,一行代码搞定特征选择
Featurewiz是一个强大的特征选择库,提供高度自动化的特征选择、全面的特征工程功能,并实现了高效的mRMR算法。它已成为许多数据科学家的首选工具,拥有140多篇Google Scholar引用。最新版Featurewiz-Polars通过集成Polars引擎,在处理速度和大规模数据集处理能力上显著提升。
基于DeepSeek的智能客服系统优化与扩展:提升性能与功能
随着用户量增长和业务扩展,系统可能面临性能瓶颈和功能不足。本文探讨了性能优化(如数据库、缓存、异步处理)、功能扩展(如多语言支持、多渠道集成、智能推荐)及持续改进(如用户反馈、A/B测试、数据分析)的方法,以提升用户体验和系统效率。通过这些措施,可以打造更高效、更智能的客服系统。
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
静态长效代理IP利用率瓶颈解析与优化路径
在信息化时代,互联网已深度融入社会各领域,HTTP动态代理IP应用广泛,但静态长效代理IP利用率未达百分百,反映出行业结构性矛盾。优质IP资源稀缺且成本高,全球IPv4地址分配殆尽,高质量IP仅占23%。同时,代理服务管理存在技术瓶颈,如IP池更新慢、质量监控缺失及多协议支持不足。智能调度系统也面临风险预判弱、负载均衡失效等问题。未来需构建分布式IP网络、引入AI智能调度并建立质量认证体系,以提升资源利用率,推动数字经济发展。
关键词搜索爱回收商品列表API接口(爱回收API系列)
爱回收作为二手电子产品交易平台,提供丰富的商品资源。其API接口允许开发者通过关键词搜索商品列表,获取商品名称、类别、品牌、预估回收价格等信息,支持分页展示和自定义每页数量。接口采用HTTP GET请求,响应格式为JSON。以下是Python示例代码,展示如何使用该接口进行搜索。
大数据AI一体化开发再加速:DataWorks 支持GPU类型资源
大数据开发治理平台 DataWorks 的Serverless资源组支持GPU资源类型,以免运维、按需付费、弹性伸缩的Serverless架构,将大数据处理与AI开发能力无缝融合。面向大数据&AI协同开发场景,DataWorks提供了交互式开发和分析工具Notebook。开发者在创建个人开发环境时,可以选择GPU类型的资源作为Notebook运行环境,以支持进行高性能的计算工作。本教程将基于开源多模态大模型Qwen2-VL-2B-Instruct,介绍如何使用 DataWorks Notebook及LLaMA Factory训练框架完成文旅领域大模型的构建。
ElasticSearch AI Assistant 系列 1 —— AI 助手配置教程
本视频介绍了如何在Elastic平台上配置AI助手以兼容并连接阿里巴巴的通义千问的第一部分——AI 助手配置。 帮助大家更直观的体验阿里云 ElasticSearch 企业级的功能——AI助手带来的可观测帮助。
京东工业平台商品列表 API 接口(京东工业 API 系列)
京东工业平台的商品列表API助力企业数字化转型,提供商品名称、价格、规格等信息,支持按分类、品牌、价格范围、关键词等筛选条件精准获取商品数据。接口采用HTTP GET/POST请求,返回JSON格式数据,包含商品基本信息、价格、库存和销售情况,适用于市场调研、竞品分析及采购计划制定。示例代码展示了如何使用Python的requests库调用该API。
短效HTTP代理IP的优点表现在哪些方面?
短效HTTP代理IP凭借其独特优势,在数字化时代备受青睐。它能满足多种业务场景,如广告推广、数据采集等,支持多个API参数,提供高效稳定的个性化定制服务。短效代理IP用量大、更换频繁,确保正常访问行为,提升业务执行效率。选择高质量的HTTP代理服务商,能保证更好的稳定性和请求速度,满足用户的核心需求。
DeepMind发布Matryoshka(套娃)量化:利用嵌套表示实现多精度LLM的低比特深度学习
本文介绍 Google DeepMind 提出的 Matryoshka 量化技术(MatQuant),该技术通过训练单个大型语言模型(LLM)实现多精度部署,革新了深度学习
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
动态HTTP代理IP的使用案例与成功经验分享有哪些?
在信息化时代,网络不可或缺。动态HTTP代理IP广泛应用于网络爬虫、信息安全保护、安全访问站点和市场调研等领域。通过选择合适的代理服务、合理配置请求频率、监控IP状态、使用代理池及结合其他技术,用户可提升工作效率和数据安全性。
打造高效的Web Scraper:Python与Selenium的完美结合
本文介绍如何使用Python结合Selenium,通过代理IP、设置Cookie和User-Agent抓取BOSS直聘的招聘信息,包括公司名称、岗位、要求和薪资。这些数据可用于行业趋势、人才需求、企业动态及区域经济分析,为求职者、企业和分析师提供宝贵信息。文中详细说明了环境准备、代理配置、登录操作及数据抓取步骤,并提醒注意反爬虫机制和验证码处理等问题。
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
大型语言模型(LLM)的发展迅速,从简单对话系统进化到能执行复杂任务的先进模型。然而,这些模型的规模和计算需求呈指数级增长,给学术界和工业界带来了挑战。为解决这一问题,知识蒸馏技术应运而生,旨在将大型模型的知识转移给更小、更易管理的学生模型。Google Research 提出的“Distilling Step-by-Step”方法不仅减小了模型规模,还通过提取推理过程使学生模型在某些任务上超越教师模型。该方法通过多任务学习框架,训练学生模型同时预测标签和生成推理过程,从而实现更高效、更智能的小型化模型。这为资源有限的研究者和开发者提供了新的解决方案,推动了AI技术的普及与应用。
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
基于结构化状态空间对偶性的贝叶斯注意力机制设计与实现
本文介绍了一种贝叶斯风格的注意力机制,用于处理长序列文本预测。传统注意力机制在处理长文本时计算复杂度高,而贝叶斯方法通过引入不确定性建模和领域知识,特别适用于小数据集或需要融入领域知识的场景。
[oeasy]python064_命令行工作流的总结_vim_shell_python
本文总结了命令行工作流中的关键工具和操作,包括vim、shell和Python。主要内容如下: 1. **上次回顾**:完成了输入输出的代码编写,并再次练习了vim的使用。 2. **shell基础**:介绍了shell环境及其基本命令,如`pwd`、`cd`、`ll -l`等。 3. **Python游乐场**:通过`python3`命令进入Python交互环境,可以进行简单计算和函数调用,常用函数有`help`、`ord`、`chr`等。 4. **vim编辑器**:详细讲解了vim的三种模式(正常模式、插入模式、底行命令模式)及其切换方法,以及常用的底行命令如`:w`、`:q`、`
唯品会商品详情接口(唯品会 API 系列)
唯品会商品详情接口助力电商发展,提供商品名称、价格、规格等详细信息,支持HTTP GET/POST请求,响应为JSON格式。开发者可通过API Key和商品ID获取数据,应用于电商数据分析、竞品调研、应用开发及价格监控,提升业务效率与竞争力。示例代码展示Python调用方法,方便快捷。
产品经理-设计生命周期 - AxureMost
设计生命周期涵盖从概念构思到产品退役的全过程,分为概念与规划、设计与开发、测试与验证、市场推出、维护与优化及衰退与退役六个阶段。每个阶段有特定目标和挑战,确保产品始终围绕用户需求和市场动态调整,保持竞争力。设计团队需灵活应对各阶段任务,以实现产品的成功。
产品经理-交互设计 - AxureMost
交互设计(Interaction Design,简称IXD)专注于创建人与产品、系统或服务之间的互动过程。其核心是通过界面操作帮助用户高效达成目标,提升用户体验。交互设计需考虑最佳展现形式、交互轮廓、文化背景及用户习惯。设计流程包括需求分析、概念设计、信息架构、原型验证和数据分析。未来,交互设计将更注重多平台和服务设计,要求设计师具备产品思维和用户心理理解能力。
1688app 商品详情接口系列(1688API)
1688作为国内知名批发采购平台,提供了一系列商品详情接口(API),助力企业和开发者获取商品基础、价格、库存及供应商信息。通过Python示例代码展示如何调用这些接口,应用场景涵盖采购决策辅助、数据分析与市场调研、电商平台整合及供应链管理系统的优化,为企业和采购商提供有力的数据支持,提升业务效率和竞争力。
Dataworks入门
很久前试用DataWorks,初版功能完善,通过提工单解决问题并学会日志分析。Copilot接入后,发现其SQL功能未严格遵循阿里云官方文档,修改的SQL不尽如人意,有待提升。整体而言,DataWorks功能强大、可定制化高、集成方便,在大数据处理方面表现出色。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。