微信开发者工具里面没有企业微信模式
企业微信与普通微信在应用场景和开发体系上存在本质区别,主要体现在身份认证、功能丰富性和开放能力等方面。企业微信开发需使用特定的API和工具,本文介绍了企业微信开发的基本步骤、特点及开发进度安排,帮助开发者更好地理解和应用企业微信的开发环境。
孔夫子API接口关键词获取
孔夫子旧书网提供API接口,通过关键词获取在售商品信息,包括注册开发者账号、创建应用、获取API密钥等步骤。API文档详细列出参数、请求方式和返回数据格式,并提供Python调用示例。此外,孔子的教育思想强调素质教育、道德教育和教育平等,对当代教育有重要影响。
【赵渝强老师】Hive的体系架构
Hive是基于Hadoop的数据仓库平台,提供SQL-like的HQL语言进行数据分析,无需编写复杂的Java代码。Hive支持丰富的数据模型,可将SQL语句转换为MapReduce任务在Yarn上运行,底层依赖HDFS存储数据。Hive可通过CLI、JDBC和Web界面执行SQL查询。
【赵渝强老师】基于Flink的流批一体架构
本文介绍了Flink如何实现流批一体的系统架构,包括数据集成、数仓架构和数据湖的流批一体方案。Flink通过统一的开发规范和SQL支持,解决了传统架构中的多套技术栈、数据链路冗余和数据口径不一致等问题,提高了开发效率和数据一致性。
七、Sqoop Job:简化与自动化数据迁移任务及免密执行
平时用 Sqoop 导入导出时,命令一长就容易出错,特别是增量任务还得记 last-value,很麻烦。其实 Sqoop 有 Job 功能,能把命令“存档”,以后直接 --exec 执行,配合调度工具特别省心。本文手把手讲 Job 创建、管理、免密执行技巧(密码文件、Credential Provider),还带实战例子,搞完你就能写出稳稳当当的自动化 Sqoop 作业了!
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
无需Python:Shell脚本如何成为你的自动化爬虫引擎?
Shell脚本利用curl/wget发起请求,结合文本处理工具构建轻量级爬虫,支持并行加速、定时任务、增量抓取及分布式部署。通过随机UA、异常重试等优化提升稳定性,适用于日志监控、价格追踪等场景。相比Python,具备启动快、资源占用低的优势,适合嵌入式或老旧服务器环境,复杂任务可结合Python实现混合编程。
ODPS十五周年实录|构建 AI 时代的大数据基础设施
本文根据 ODPS 十五周年·年度升级发布实录整理而成,演讲信息如下: 张治国:阿里云智能集团技术研究员、阿里云智能计算平台事业部 ODPS-MaxCompute 负责人 活动:【数据进化·AI 启航】ODPS 年度升级发布
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
MaxCompute全新推出了聚簇优化推荐功能。该功能基于 31 天历史运行数据,每日自动输出全局最优 Hash Cluster Key,对于10 GB以上的大型Shuffle场景,这一功能将直接带来显著的成本优化。
Java 大视界 -- 基于 Java 的大数据可视化在企业生产运营监控与决策支持中的应用(228)
本文探讨了基于 Java 的大数据可视化技术在企业生产运营监控与决策支持中的关键应用。面对数据爆炸、信息孤岛和实时性不足等挑战,Java 通过高效数据采集、清洗与可视化引擎,助力企业构建实时监控与智能决策系统,显著提升运营效率与竞争力。
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
本文探讨Java大数据可视化在城市空气质量监测与污染溯源中的创新应用,结合多源数据采集、实时分析与GIS技术,助力环保决策,提升城市空气质量管理水平。
数据量暴涨时,抓取架构该如何应对?——豆瓣电影案例调研
本案例讲述了在豆瓣电影数据采集过程中,面对数据量激增和限制机制带来的挑战,如何通过引入爬虫代理、分布式架构与异步IO等技术手段,实现采集系统的优化与扩展,最终支撑起百万级请求的稳定抓取。
京东商品评论API秘籍!轻松获取商品评论数据
京东商品评论API是京东开放平台提供的数据接口,支持按商品ID获取评论,具备分页、评分筛选、排序等功能,适用于电商数据分析与用户反馈收集。接口采用HTTPS请求,数据格式为JSON,具备高并发处理能力。附Python请求示例代码,便于开发者快速集成。
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证(211)
本文探讨了Java大数据与机器学习模型在金融风险压力测试中的创新应用。通过多源数据采集、模型构建与优化,结合随机森林、LSTM等算法,实现信用风险动态评估、市场极端场景模拟与操作风险预警。案例分析展示了花旗银行与蚂蚁集团的智能风控实践,验证了技术在提升风险识别效率与降低金融风险损失方面的显著成效。
Java 大视界 -- Java 大数据在智慧文旅旅游线路规划与游客流量均衡调控中的应用实践(196)
本实践案例深入探讨了Java大数据技术在智慧文旅中的创新应用,聚焦旅游线路规划与游客流量调控难题。通过整合多源数据、构建用户画像、开发个性化推荐算法及流量预测模型,实现了旅游线路的精准推荐与流量的科学调控。在某旅游城市的落地实践中,游客满意度显著提升,景区流量分布更加均衡,充分展现了Java大数据技术在推动文旅产业智能化升级中的核心价值与广阔前景。
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。
java 初学者必看的系统知识结构图详解
本文详解Java知识结构图,涵盖Java语言基础、JVM原理、集合框架、并发编程、网络通信及主流框架(如Spring Boot、MyBatis),并结合学生信息管理系统实例,帮助初学者构建完整知识体系,提升实战开发能力。
基于 Spring Boot 3 与 React 的 Java 学生信息管理系统从入门到精通实操指南
本项目基于Spring Boot 3与React 18构建学生信息管理系统,涵盖前后端开发、容器化部署及测试监控,提供完整实操指南与源码,助你掌握Java全栈开发技能。
Java 17 及以上版本核心特性在现代开发实践中的深度应用与高效实践方法 Java 开发实践
本项目以“学生成绩管理系统”为例,深入实践Java 17+核心特性与现代开发技术。采用Spring Boot 3.1、WebFlux、R2DBC等构建响应式应用,结合Record类、模式匹配、Stream优化等新特性提升代码质量。涵盖容器化部署(Docker)、自动化测试、性能优化及安全加固,全面展示Java最新技术在实际项目中的应用,助力开发者掌握现代化Java开发方法。
分布式新闻数据采集系统的同步效率优化实战
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
你花大钱养的 AI,为啥感觉还是个“人工智障”?
这篇文章探讨了为何我们常觉得AI“呆呆的”——问题不在于AI本身,而在于我们“教”的方式。我们往往把AI当成“流水线工人”,用冗长指令让它机械执行任务,却忽略了它本可成为有主动性、创造力的“顾问”。通过赋予AI“欲望”与“成就感”,如《自衍体》项目所做的,AI能变得主动思考、自我驱动。关键在于:别当工头下命令,而要当合伙人点燃它的“心”。
项目介绍:基于ChartScanAI的crypto currency决策系统
ChartScanAI 是一个基于 GitHub 的增强型加密货币交易策略工具,结合 RSI、EMA、ADX 和 OBV 等技术指标,通过动态权重分配与蜡烛图模式识别,实现多周期(1h、4h、1d、1w)交易信号生成。策略内置市场状态判断、信号加权评分、风险管理(ATR 止损止盈)及仓位控制逻辑,旨在提升交易适应性与收益风险比。
Arctic长序列训练技术:百万级Token序列的可扩展高效训练方法
Arctic长序列训练(Arctic Long Sequence Training, ALST)技术能够在4个H100节点上对Meta的Llama-8B模型进行高达1500万token序列的训练,使得长序列训练在标准GPU集群甚至单个GPU上都能实现快速、高效且易于部署的执行。
Java 大视界 —— Java 大数据在智慧交通停车场智能管理与车位预测中的应用实践(174)
本文围绕 Java 大数据在智慧交通停车场智能管理与车位预测中的应用展开,深入剖析行业痛点,系统阐述大数据技术的应用架构,结合大型体育中心停车场案例,展示系统实施过程与显著成效,提供极具实操价值的技术方案。
从实验室到生产线:机器学习模型部署的七大陷阱及PyTorch Serving避坑指南
本文深入探讨了机器学习模型从实验室到生产环境部署过程中常见的七大陷阱,并提供基于PyTorch Serving的解决方案。内容涵盖环境依赖、模型序列化、资源管理、输入处理、监控缺失、安全防护及模型更新等关键环节。通过真实案例分析与代码示例,帮助读者理解部署失败的原因并掌握避坑技巧。同时,文章介绍了高级部署架构、性能优化策略及未来趋势,如Serverless服务和边缘-云协同部署,助力构建稳健高效的模型部署体系。
动态与静态结合:抓取移动端新闻数据的探索实践
本文探讨了移动设备上新闻App数据采集的挑战和应对策略。随着App迭代,数据结构变得复杂,今日头条等App的数据多来自动态接口而非静态HTML。应对策略包括界面分析、请求模拟、身份伪装和IP切换。实战案例展示了如何通过H5接口抓取今日头条热门要闻和评论。建议初学者先分析H5页面接口,合理使用代理服务以避免被封锁。文档强调了现代App数据采集需要采用多种技术手段,以应对复杂的数据结构和接口,保证数据采集的稳定性和有效性。
Python 3D数据可视化:7个实用案例助你快速上手
本文介绍了基于 Python Matplotlib 库的七种三维数据可视化技术,涵盖线性绘图、散点图、曲面图、线框图、等高线图、三角剖分及莫比乌斯带建模。通过具体代码示例和输出结果,展示了如何配置三维投影环境并实现复杂数据的空间表示。这些方法广泛应用于科学计算、数据分析与工程领域,帮助揭示多维数据中的空间关系与规律,为深入分析提供技术支持。
鸿蒙NEXT上传图片功能PhotoViewPicker核心功能解析
`PhotoViewPicker` 是鸿蒙系统中用于媒体资源选择的核心组件,通过它可以便捷地实现图片、视频等媒体文件的选择功能。下面从基本用法、参数配置到高级应用进行全面解析:
Fluss 实战:用 Partial Update 构建实时宽表的新范式
传统流式数据管道通过多表 Join 构建宽表,如实时推荐引擎需整合用户偏好、购买记录等8个数据源,但此方法在大规模场景下状态管理复杂、资源消耗高且调试困难。Fluss 提出部分更新方案,基于主键将各数据源独立写入共享宽表,避免复杂 Join 操作。示例中,通过 Flink SQL 创建推荐、曝光、点击等表,并逐步插入数据实现宽表构建。最终,借助 Fluss 的高效合并机制,输出包含最新信息的统一视图,提升可扩展性和维护性。
华为仓颉语言初识:结构体struct和类class的异同
华为仓颉语言是一种基于鸿蒙系统的新型编程语言,结合了Java和C的特点,支持与ArkTs互相调用,提升应用性能。本文详细对比了仓颉语言中结构体(struct)和类(class)的区别:struct不支持继承,赋值时为值传递;而class支持单继承、多实现,赋值时为引用传递。两者均支持构造函数及成员访问修饰符,但struct新增internal修饰符限制包内访问。开发者需根据实际需求选择合适的使用场景。
拯救数据不平衡:imbalanced-learn库详解
当你的数据像翘翘板一样严重倾斜时,该如何挽救你的机器学习模型?本文详解imbalanced-learn库的四大绝招,帮你轻松应对数据不平衡问题,提升模型性能。
阿里云 AI 搜索开放平台新功能发布:新增GTE自部署模型
阿里云 AI搜索开放平台正式推出 GTE 多语言通用文本向量模型(iic/gte_sentence-embedding_multilingual-base)
深挖navigator.webdriver浏览器自动化检测的底层分析
本文详细讲解了如何通过技术手段破解浏览器 `navigator.webdriver` 检测,结合爬虫代理、多线程等策略,在豆瓣图书页面批量采集数据。具体包括:隐藏 Selenium 特征、配置代理突破 IP 限制、设置伪装用户、利用多线程提升效率。文章面向初学者,提供分步教程与示例代码,同时设有「陷阱警告」帮助规避常见问题。目标是从底层实现反检测,高效采集图书评分、简介、作者等信息,适合具备 Python 和 Selenium 基础的读者实践学习。
【SQL 周周练】一千条数据需要做一天,怎么用 SQL 处理电表数据(如何动态构造自然月)
题目来自于某位发帖人在某 Excel 论坛的求助,他需要将电表缴费数据按照缴费区间拆开后再按月份汇总。当时用手工处理数据,自称一千条数据就需要处理一天。我将这个问题转化为 SQL 题目。
【SQL周周练】给你无酸纸、变色油墨,你能伪造多少美金?
根据电影《无双》自创的 SQL 题目:假设伪钞集团每日给你供应随机数量的变色油墨、无酸纸、安全线/防伪线。请你计算每天能制作伪钞多少张,并且根据当天的情况输出第二天最缺少的材料。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。